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ABSTRACT 
 

Global energy demands are constantly increasing and fossil fuels are a finite resource. The 

shift towards alternative, more renewable and sustainable fuels is inevitable. Furthermore, the 

increased emissions of greenhouse gases have forced a pressing need to find cleaner, more 

environmentally friendly sources of fuel. Biomass energy is a promising alternative fuel because 

it offers several important advantages. It is a renewable energy form, it comes from many sources 

and produces biogas (CH4 and CO2). Furthermore, it can have a zero carbon footprint; this is due 

to the fact that the carbon produced is from the same carbon used to make the biomass. In addition, 

by replacing fossil fuels, the emissions of CH4 and CO2 (both greenhouse gases) is reduced. 

Biomass-derived syngas (H2 and CO) can be utilized as a feedstock for many important industrial 

processes such as methanol synthesis, ammonia synthesis and Fischer-Tropsch synthesis (FTS) to 

produce long chain hydrocarbon fuels.  

Municipal solid waste (MSW) biomass is considered as the source of the biomass for this 

dissertation work. MSW accounts for 20% of man-made methane emissions making it an attractive 

source for utilization. However, methane reforming to synthesis gas (H2 and CO) typically occurs 

at temperatures higher than 600°C making it economically challenging at the smaller scale of 

MSW conversion processes.  

This dissertation effort focused on formulating low precious metal loaded heterogeneous 

catalysts that can reform methane at low temperature (T<500°C) making the process more 

industrially viable. The effect of select contaminants (siloxanes) in the biogas on the reforming 
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catalysts was studied through accelerated poisoning. Finally, the syngas ratio was improved by 

combining low temperature dry reforming with steam reforming (termed bi-reforming).  

The catalyst system used for this dissertation study was comprised of 1.34wt%Ni- 

1.00wt%Mg on a Ceria-Zirconia oxide support (0.6:0.4 ratio respectively). The catalysts were 

doped with platinum (0-0.64% by mass) and compared to palladium doped catalysts (0-0.51% by 

mass). The ratio chosen for the support, Ce0.6Zr0.4, was determined to be the best ratio in terms of 

activity and surface area by previous studies done in this group [1]. Nickel has been widely studied 

as methane reforming catalyst [2-6]. Alone, nickel atoms are prone to carbon deposition especially 

during methane decomposition, however, coupling NiO with MgO helps to reduce carbon 

deposition by reducing agglomeration of Ni crystallites, thereby improving catalyst lifetime [2, 7]. 

Furthermore, addition of small amounts of noble metals such as Pt or Pd help to drive the reduction 

of the catalyst to lower temperatures and enhance catalytic activity.  

Different metal loadings of Pt and Pd were tested to determine the optimum catalyst that 

will reform methane at low temperatures, is resistant to deactivation and produces a high syngas 

ratio (~2:1) which is necessary for processes such as FTS.  Preliminary results have shown that in 

general Pt is superior in this catalyst system for low temperature reforming of methane. It 

consistently had syngas ratios near the desired ratio compared to Pd, it did not deactivate with 

extended time on stream and overall had higher turnover frequencies. This catalyst system has 

potential to make industrial reforming of methane from biomass feedstock more economically 

viable.  
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CHAPTER 1: INTRODUCTION 
 

With increasing population, it is estimated that global energy demands will continue to rise 

and top 820 quadrillion BTU in the next thirty years. That is more than a 56% increase from today’s 

demand of 524 quadrillion BTU according to the International Energy Outlook of 2013 [8]. Most 

of the demand will continue to be fulfilled from non-renewable fossil fuels. In the US alone, 14.3 

billion barrels of fossil fuels are presently being consumed annually. Current US proved oil 

reserves are about 19.1 billion barrels [9] and world reserves about 1342 billion barrels. Given the 

current rising trend in energy consumption, the world reserves would be exhausted in just over 40 

years. With the inevitable depletion of fossil fuels and the alarming increase in demand, alternative 

fuel sources are no longer optional, but are now a necessity. Alternative fuels that are currently 

under investigation or are being used include solar energy, wind energy, biomass energy, and 

hydrogen energy to name a few. Although each type of alternative fuel mentioned offers 

advantages, there are also severe limitations preventing it from being used on a wider scale. For 

instance, solar energy is intermittent and highly dependent on geographic location. Other 

alternative energy forms suffer from issues of transportation and storage.  

Waste to energy (WTE) routes offer several attractive advantages. In addition to being 

sustainable as well as renewable, WTE fuels also have the potential to reduce emissions of two 

major greenhouse gases mainly methane and carbon dioxide. Furthermore, WTE fuels specifically 

biofuels can have zero carbon emissions. This is a result of reutilizing the carbon in the biomass 

which was produced from CO2 in the atmosphere. This same carbon which forms carbon dioxide, 
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is used to make synthesis gas (H2 and CO) and other hydrocarbons in combined processes 

potentially resulting in zero environmental emissions.  

Biomass-derived biogas conversion to liquid fuels is considered as a potential alternative 

fuel source for a variety of reasons as previously mentioned. In addition to the possibility to 

become a carbon neutral energy source as well as reduce emissions of CH4 and CO2, upon 

reforming, the produced syngas can be used as a feedstock for many industrial chemicals including 

Fischer Tropsch Synthesis (FTS) to produce liquid hydrocarbons.  The goal of this dissertation is 

to reform biogas at low temperatures to syngas using novel low metal loading heterogeneous 

catalysts and determine the effect of select impurities on the reforming catalysts. The produced 

syngas can then be used through an unconventional route to upgrade (the original biogas) using 

noble metal-doped composite catalysts to liquid hydrocarbon fuels using FTS in a combined 

intensified process.   

1.1 Biomass 

Biomass produces biogas (CH4 and CO2) through several pathways. Table 1.1 outlines 

various routes of biomass to second generation biofuels as well as the main advantages and 

limitations of each. Biomass can come from industrial residues, animal wastes, municipal solid 

waste (MSW), sludge digesters and agricultural crops. Depending on the source of the biomass, 

the produced biogas which is roughly equal parts of the two major greenhouse gases methane and 

carbon dioxide, can also have some contaminants such as the case with MSW derived biomass 

[10].  

Biomass also possesses the attractive quality of being a carbon neutral energy source since 

the carbon dioxide produced is largely the same that was used to create the biomass forming a 

closed carbon cycle as mentioned earlier. That is one of the main advantages of utilizing biomass 
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as an energy source versus fossil fuels which generates new greenhouse gases according to NREL 

[11]. Biomass has been used as an energy form from prehistoric times when wood was burned for 

energy. Furthermore, biomass has the potential to largely replace the heavily depended-upon fossil 

fuels and can be utilized in three useful ways. Biomass can be converted to liquid fuels termed 

biofuels which is the main focus of this dissertation effort. However it can also be directly burned 

for electricity (biopower) or can be reprocessed into chemicals (bioproducts)[11].  

CH4 and CO2, the two most abundant greenhouse gases, are the primary components of 

biogas as previously mentioned and have been increasingly emitted into the earth’s atmosphere. 

According to the key world energy statistics, CO2 emissions have been steadily increasing for the 

past 45 years, with more than 31.7 GT of CO2 emitted in 2012 [12]. At the current rate, it is 

expected that emissions can reach 45 GT by 2040 which may devastatingly and irreversibly 

increase the earth’s temperature by 2°C [12]. Therefore, it is crucial to find ways to decrease 

emissions of CO2. Furthermore, methane, which is the second most abundant greenhouse gas is 

more powerful than CO2 in that it is able to trap energy much more efficiently into the earth’s 

atmosphere [13]. In fact, over a 100 year period, pound for pound, methane has an effect 25 times 

greater on the earth’s atmosphere than CO2 [13]. Therefore, methane is a gas that should be 

mitigated and considered for its harmful effects just like CO2.   

1.2 Methane Emissions 

In 2014, methane (CH4) accounted for 11% of all emitted greenhouse gases [13]. CH4 

comes from a variety of different sources. More than 33% of man-made CH4 emissions comes 

from petroleum and natural gas processes. Enteric fermentation accounts for the second largest 

portion of emissions at 22%. Landfills account for 20% of all CH4 emissions. Coal mining accounts 

for 9% of emissions and the remaining 14% comes from wastewater treatment and other smaller 
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sources [13]. Natural sources such as wildfires, termites and wetlands also contribute to CH4 

emissions, although at a smaller scale. According to the Inventory of U.S. Greenhouse Gas 

Emissions and Sinks published on the EPA’s website, more than 700 million metric tons of CO2 

equivalent CH4 was released into the atmosphere in 2014 [13] with an expectation that this number 

will continue to rise. 

 As a result of the increased awareness to the potential hazardous effect of CH4 emissions 

on the global community, many initiatives have been placed to help mitigate emissions. In 2010, 

the Global Methane Initiative was launched with the support of more than 38 nations to find 

solutions to curb CH4 emissions. Because methane is produced from many sources, reduction of 

emissions varies and can be source specific. In industry, new equipment can reduce undesired 

leaks. Capturing and storing methane for energy is also an option especially in coal mines. 

However, finding safe long term storage is a challenge. The EPA has put the Natural Gas STAR 

Program as well as the Coalbed Methane Outreach Program in place to provide a guide to industry 

on how to reduce emissions. For emissions resulting from agriculture, the EPA has initiated the 

AgSTAR program which encourages the storage and reutilization of the generated CH4 through 

means such as anaerobic digestion [13].  

1.3 Municipal Solid Waste Biomass 

In the case of biodegradable municipal solid waste dumped in landfills, the generated 

biogas, called landfill gas (LFG), has the same composition of methane and carbon dioxide as 

other types of biogases but also has some impurities. Biogas derived from MSW has the same 

potential as an energy source. The EPA has recently set limits on emissions of CH4 from landfills 

[10] as part of the landfill methane outreach program (LMOP). As a result of the program, CO2 

and CH4 emissions from landfills have been reduced by 39.5MMTCO2e in 2014 [14]. Although 
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the LMOP initiative has curbed emissions of both CO2 and CH4, there is still a very long way to 

go before emissions are overall reduced to an acceptable limit that does not contribute to global 

warming. According to the EPA [15], 20% of CH4 anthropogenic emissions come from landfills 

as previously discussed. It is estimated that the US generates more than 250 million tons of 

municipal solid waste (MSW) per year which mostly go to landfills [10]. That is roughly equivalent 

to 4.3 lb/day of waste per person which is expected to increase with the growing population. 

Biomass, the biodegradable component of MSW (and primary source for biogas) accounts for 

about 215 billion cu.ft/year.  

A typical small to midsize landfill containing 1 million tons of MSW will produce 

12,232m3/day of LFG and will continue at this level of production for 20-30 years [16]. Currently 

less than 15% of MSW is utilized for energy. However LFG is instead used in three main ways, 

the gas gets flared, or burned for electricity or the CH4 gets condensed (CNG). Most of these are 

inefficient ways of utilizing the full potential of LFG. For instance, burning the gas for electricity 

is only about 40% efficient [17]. Furthermore, the incineration process produces more pollutants 

and greenhouse gases. Condensing the CH4 may be useful for industrial uses, however it still leaves 

the issue of the carbon dioxide unresolved. Reforming LFG to H2 and CO (syngas) is one attractive 

route to reduce greenhouse gas emissions and generate a usable feedstock. Syngas can be used as 

a feedstock for ammonia as well as methanol synthesis and can be upgraded to long chain 

hydrocarbons such as diesel and jet fuel using Fischer Tropsch synthesis (FTS) (reaction 1.5 

below). Furthermore, upgrading landfill gas has many environmental benefits including reduction 

of greenhouse gas emissions, improving air quality and reducing fossil fuel dependence.   
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1.4 Types of Methane Reforming 

There are several different routes for reforming of CH4 which are widely used in industry 

to produce syngas. Reforming of CH4 can be done using CO2 as the oxidant, termed dry reforming, 

which is shown as reaction (1) (DRM). Methane dry reforming is attractive due to the lower cost 

and the lower H2:CO ratios (≤1-1.5) produced making it more viable for use in FTS [2, 7, 18-20]. 

However, for the endothermic dry reforming of methane reaction, high temperatures (T>600°C) 

are a necessity for reaching desirable H2:CO (syngas) ratios for FTS.  

 
𝐶𝐶𝐻𝐻4 + 𝐶𝐶𝐶𝐶2 = 2𝐶𝐶𝐶𝐶 + 2𝐻𝐻2                                                      𝛥𝛥𝛥𝛥° = 247.3 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�   (1.1) 

𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 = 𝐶𝐶𝐶𝐶 + 3𝐻𝐻2                                                𝛥𝛥𝛥𝛥° = 206.3𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�   (1.2) 

𝐶𝐶𝐻𝐻4 + 1
2� 𝑂𝑂2 = 𝐶𝐶𝐶𝐶 + 2𝐻𝐻2                                                   𝛥𝛥𝛥𝛥° = −35.6 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�   (1.3) 

𝐶𝐶𝐶𝐶 + 𝐻𝐻2𝑂𝑂 = 𝐶𝐶𝑂𝑂2 + 3𝐻𝐻2                                                𝛥𝛥𝛥𝛥° = −41 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�   (1.4) 

𝑛𝑛𝑛𝑛𝑛𝑛 + �𝑛𝑛 + 1
2� 𝑚𝑚�𝐻𝐻2 = 𝐶𝐶𝑛𝑛𝐻𝐻𝑚𝑚 + 𝑛𝑛𝑛𝑛2𝑂𝑂                   𝛥𝛥𝛥𝛥° = −𝑋𝑋𝑘𝑘𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�  (1.5) 

The produced syngas can then be utilized for fuel synthesis of hydrocarbon as well as 

oxygenate fuels and chemicals when combined with steam reforming (reaction 1.2) or the WGS 

reaction (reaction 1.4). The endothermic dry reforming reaction readily occurs at high 

temperatures as previously stated [21]. However, that also adds to the overall cost of the process 

on an industrial scale, as CH4 is commonly parasitically combusted to generate the heat. The DRM 

reaction is thermodynamically predicted to not occur at temperatures below 350°C with coking 

being the only possible pathway at such low temperatures [7, 22]. Low temperature dry reforming 

of CH4 has the potential to decrease the cost making it industrially more feasible. A desired H2:CO 

of 2:1 is necessary for FTS to produce longer chain hydrocarbons (C10+) [23-25], though lower 

values are desirable for alcohols, acetic acid, and alkenes [26]. One of the targets of this 
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dissertation work is to lower the temperature of CH4 dry reforming using novel low metal loading 

catalysts. 

Steam alone is also used to reform methane in a process called steam reforming (SRM) 

(reaction 1.2). Steam reforming usually produces very high H2:CO ratios (>3)  versus other types 

of reforming as a result of the water gas shift reaction simultaneously occurring (reaction 1.4) [27]. 

Coupling dry reforming with steam reforming (bi-reforming, reactions 1.1 and 1.2) and/or partial 

oxidation of CH4 (tri-reforming, reactions 1.1-1.3) can improve the H2:CO ratio [1, 28, 29] and 

help adjust it to the desired ratio. High syngas ratios are not suitable for fuel producing techniques 

such as FTS because they favor the methanation reaction [2].  Bi-reforming at low temperatures 

yielded much higher syngas ratios compared to dry reforming alone using the catalyst systems 

used in this study and will be discussed in greater detail in chapter 5. Other less frequently used 

reforming techniques include oxy-steam reforming of methane (OSRM), partial oxidation of 

methane (POM), autothermal reforming of methane (ATR) and oxy- reforming of methane 

(ORM).  

This work demonstrates low temperature reforming activity, stability, and the components 

required for an active catalyst. The reforming temperature is affected by both the support and the 

catalyst used.  

Many supports have been investigated for dry reforming of methane including silica, 

alumina, (Ce,Zr)O2 and perovskites [19, 30, 31].  Using noble metal catalysts can help drive the 

reaction to lower temperatures making it more economically feasible and also open possibilities 

for intensified processes. Coupling low temperature (T<500°C) dry reforming with heat from solar 

energy as an example can help reduce or eliminate the need for heating by natural gas combustion 

[32]. The current work focuses on low temperature reforming of CH4, as a model of biogas derived 
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from municipal solid waste biomass, using Pt or Pd doped nickel magnesium catalysts on a ceria-

zirconia oxide support. The effect of contaminants (mainly siloxanes) in the biogas on the 

reforming catalyst was studied through accelerated poisoning and the syngas ratio was improved 

through combining dry reforming with steam reforming (bi-reforming). 

1.5 LFG Cleanup Technologies and Motivation 

As discussed earlier, the source of biomass considered for this research effort is MSW. 

LFG derived from MSW contains a variety of impurities that must be cleaned prior to the 

reforming process. Otherwise these contaminants rapidly build up in equipment (engines, turbines, 

etc.) causing it to fail as well as deactivate reforming catalysts and are harmful to the environment. 

Contaminants present in LFG include siloxanes, sulfides, halides and mercury compounds. 

Siloxanes are compounds that have silicon, oxygen and methyl groups. Depending on the chain 

length, siloxanes can be linear or cyclic. Siloxanes decompose to silica, which then deposits onto 

the equipment and/ or catalyst causing irreversible damage.  To protect the equipment from the 

extensive damage these siloxanes can cause, engine manufacturers have decreased the allowable 

siloxane concentration limits to maintain warranty from 10 mg/m3 to 2.8 mg/m3 [33]. This fueled 

the need to have efficient cleaning processes.  

Currently, industrial contaminant removal can be categorized into three main areas, 

adsorption, absorption and chilling [34]. Adsorption is further subcategorized into fixed bed and 

fluidized bed adsorption. In fixed bed adsorption, there are usually two parallel adsorbers with 

regenerable adsorbant that are interchanged. While in fluidized bed adsorption, the process is 

continuous and is more suited for higher volatile organic matter concentrations. It is also 

sometimes referred to as temperature swing adsorption. Where biogas flows to one adsorber of 
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activated carbon for purification while contaminants are simultaneously desorbed and exhausted 

in a second adsorber [34].  

The second major type of contaminant removal is absorption which is also a continuous 

process that can be either chemical or physical. Chemical absorption utilizes strong acids and bases 

such as sulfuric acid or sodium hydroxide. Physical absorption is done using absorbents as well as 

organic solvent [34]. Packed or spray columns are the most widely used for siloxane absorption. 

However, gas flow rate plays a key role in amount of siloxane removed. Where at higher flowrates, 

the siloxanes can flow out of the solvent and back into the gas defeating the process of removal 

[35].  

The final major technology used for contaminant removal is gas chilling. Removal is done 

at a temperature less than -25°C where larger siloxanes and chillers sometimes operate as 

condensers [34]. However, all of these removal technologies add high operating costs to the 

process such as frequently replacing scrubbing beds. Equipment manufacturers are implementing 

more stringent warranty guidelines for allowable VMS levels. For instance, in 2002, engine 

manufacturers had an allowable siloxane levels of 10-15 mg/m3. However by 2008, that number 

decreased to 2.8 mg/m3 [33]. This in turn forces the need for higher contaminant removal levels 

and better technologies which still need to be developed to make the process economical.    

1.6 Catalyst System 

1.6.1 Ceria-Zirconia Oxide Support 

The catalysts developed for this study are nickel magnesium catalysts (1.00-1.34 weight% 

of each) supported on ceria zirconia (0.6:0.4 mass ratio) and doped with either platinum (0-0.64% 

by mass) or palladium (0-0.51% by mass). Many supports have been investigated for reforming of 

methane. Studied supports have included different silicates, ceria, alumina, zirconia, lanthanum 
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oxide, perovskites, titanium dioxide and magnesium oxide [1, 2, 6, 19, 20, 30, 31, 36-40]. For this 

work, a mixed ceria-zirconia oxide support (Ce0.6Zr0.4)O2 was chosen for a variety of reasons. 

Literature shows that ceria has a high oxygen storage capacity (OSC) which is useful for the 

reaction in enhancing the reducibility within the fluorite lattice [41]. In addition, oxygen vacancies 

in the support help reduce coking [42].  

The ratio chosen for this work was also shown to have the highest catalyst activity and 

stability versus other compositions [1, 31]. Adding zirconia which has a smaller ionic size, helps 

create a lattice strain which in turn causes high oxygen mobility that help improve the redox 

properties [42, 43]. In addition, (Ce,Zr)O2 is thermally stable at high temperatures [31, 41].  The 

addition of zirconia to ceria also helps to shift the oxygen vacancies to the more stable surfaces 

(111) and (110). This oxygen shift aids in moving the reduction equilibrium to the right by utilizing 

bulk oxygen which in turn significantly favors bulk reduction [44].  

1.6.2 Nickel Catalysts 

Nickel has been used as a catalyst for many chemical reactions such as methane reforming, 

including dry, steam as well as tri reforming, hydrogenation of CO, and cellulose decomposition 

[1, 2, 27, 39, 45-47]. Nickel offers various advantages over other metal catalysts including 

abundance, high activity and low cost [3, 7, 27, 48, 49].  

Furthermore Ni supported on Ce-Zr has been shown by Laosiripojana et al. to convert 

methane at temperatures between 650°C and 900°C using steam reforming [41]. Tri reforming of 

methane using Ni catalysts supported on ceria zirconia has been shown to produce a syngas ratio 

of 1.5-2 at ~850°C by Song and Pan [50]. Walker et al. [1] had a similar observation of syngas 

ratios between 1.7-2.3 at 800°C using a Ce0.6Zr0.4-8%wtNi8%wtMg catalyst.  
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However, one major drawback for Ni catalysts is that they suffer from rapid deactivation 

via coke formation and sintering [2, 7, 49, 51]. Carbon deposits on Ni to form fibers especially in 

dry reforming reactions [2]. This is the result of the decomposition of methane allowing carbon 

atoms to attach onto the nickel surface forming layers [2, 52]. The length between Ni-Ni bonds 

increases as carbon atoms adsorb thereby allowing deeper penetration until more layers of 

graphitic carbon form eventually deactivating the catalyst [7].  

It has been shown by Laosiripojana et al. that Ni supported on Ce-ZrO2 displayed higher 

resistivity to coke formation compared to other supports with a Ce to Zr ratio of 3:1 for steam 

reforming. This was attributed to the high oxygen storage capacity (OSC) of Ce-ZrO2 which help 

initiate redox reactions of the present species thereby reducing carbon deposition from methane 

decomposition. In addition, the catalyst remained stable with no activity loss even after 10 hours 

on stream at 900°C and 3kPa [41].  

1.6.3 Magnesium 

Adding MgO to NiO creates a solid solution [2]. From TPO studies of Ni/MgO to Ni/SiO2 

and Ni/TiO2 done by Bradford and Vannice, it was determined that MgO interaction with Ni helps 

reduce the formation of coke on the surface by several orders of magnitude compared to other 

supports [2]. In addition, MgO helps add basicity to the catalyst which also reduces the 

agglomeration of Ni particles.   

1.6.4 Noble Metals 

Noble metals such as Ru, Rh, Pt, Pd have been investigated as dopants to nickel catalysts 

for methane reforming [53-55]. Noble metals dissociatively adsorb hydrogen. In addition, there’s 

evidence in the literature to support that noble metals and Ni can help reduce the CeZrO2 support 

through hydrogen spillover [56].   
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Furthermore, addition of noble metals such as Pt and Pd helps the catalyst to reduce at 

lower temperatures [20, 53, 56]. This is due to noble metals’ high affinity for hydrogen atoms 

which in turn reduces the amount of carbon deposits. In addition, noble metals affect the basicity 

of the catalyst thereby changing the amount of CO2 adsorbed. This effect is caused by a shift in 

surface coverage that allows for more stability to intermediates formed after CH4 decomposition 

and CO disproportionation [7, 20].  

Overall, this dissertation effort focused on two important challenges in the waste-to-energy 

(WTE) field as shown in Figure 1.1. The first is economy of scale addressed by lowering the initial 

reforming temperature through novel heterogeneous catalysts. The second is effect of 

contaminants on the reforming catalyst using LFG as a feed.  

Chapter 2 discusses the synthesis and characterization of low temperature dry reforming of 

methane catalysts. Several loadings of Platinum on Nickel-Magnesium catalysts supported on a 

Ceria-Zirconia oxide support were tested. Chapter 3 discusses Palladium doped Nickel-

Magnesium catalysts and compares them to Platinum doped Nickel-Magnesium catalysts, both on 

a Ceria-Zirconia oxide support, for low temperature dry reforming. Chapter 4 addresses the effect 

of silicon poisoning through accelerated deactivation studies on both the Platinum low temperature 

reforming catalyst and the high temperature reforming catalyst comprised of Nickel-Magnesium 

only supported on a Ceria-Zirconia oxide support. Chapter 5 discusses improving the syngas ratio 

through bi-reforming and explores the effect of GHSV on both the Platinum and Palladium low 

temperature catalysts. Finally Chapter 6 includes overall conclusions and recommendations for 

future work. 
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Figure 1.1: Objectives of this research effort (denoted by dashed lines) and place in overall 
WTE process.
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Table 1.1: Biomass conversion to second generation biofuels: Overview, advantages and disadvantages of various technologies/ 
processes. 
 

Method Conversion 
Method 

Biomass 
Source 

Potential 
Fuel Output Strengths Weakness Source 

Anaerobic 
Digestion 

Bio-chemical Landfills, 
wastewater, 
agricultural 
waste 

CH4/CO2 
(Biogas)-
medium Btu 
gas 

• Environmental 
• Carbon neutral 
• No water input 
• Reduction of unpleasant 

odors 
• Reduction of GHG 

emissions 
• Low temperature process 

(T~35°C) 

• Long process (20-30 
days) but can be 
accelerated 

• For landfills, extraction 
systems are necessary. 

• Accumulation of heavy 
metals in sludge 

[57-59] 

Pyrolysis Thermo-
chemical 

Agricultural, 
wood 

Bio-oil 
Electricity 

• Can be tuned (through 
temperature) to produce 
low-medium value gas or 
aerosols.  

• High temperature 
required (300-700°C) 

• Coke residue 
 

[60, 61] 

Gasification Thermo-
chemical 

Agricultural 
waste, 
municipal 
solid waste, 
wood 

Low-
Medium Btu 
gas 
(CO/H2/CO2) 

• Produces electricity and 
mechanical energy 

• Air can/should be 
present  

 
 
 
 
 

• Lots of undesired bi-
products (pollutants) 

• Lots of energy loss 
(combustion) 

• Requires high temper-
atures (T>1000K) 

• Tar formation 
• Requires low water 

content 

[60] 
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CHAPTER 2: LOW TEMPERATURE DRY REFORMING OF METHANE OVER PT- 
 

NI-MG/CERIA-ZIRCONIA CATALYSTS1 
 

2.1 Introduction 

Fossil fuels are a finite resource and the world’s energy demands are constantly increasing. 

Alternative fuel sources are no longer optional, but are now a necessity. Dry reforming of methane 

(DRM) has been extensively studied in recent years [3, 18, 19, 21, 62, 63]. The process can produce 

syngas at a H2:CO ratio of 2:1 which is ideal for Fischer Tropsch Synthesis (FTS) and methanol 

synthesis, when combined with other reactions such as steam reforming [7, 18, 50] or the water-

gas shift (WGS). As a greenhouse gas, methane is 20 times more powerful at trapping heat than 

carbon dioxide, which makes it considerably harmful to the atmosphere. According to the EPA 

[15], 29% of methane emissions come from natural gas and petroleum, whereas enteric 

fermentation (25%), and landfills (18%) also account substantially. The remaining 28% are 

emitted through various processes such as coal mining and wastewater treatment. These are also 

under-used sources of methane, which either contain or could be combined with carbon dioxide 

and other oxidants for conversion processes. For example, biodegradable municipal waste in 

landfills produces landfill gas (LFG, comprised of roughly equal amounts of methane and carbon 

                                                 
1 Reprinted with permission from N. H. Elsayed, N. M. Roberts, B. Joseph, and J. N. Kuhn. Low 

temperature dry reforming of methane over Pt-Ni-Mg/ceria-zirconia catalysts. Applied Catalysis 

B: Environmental 179 (2015), 213-219. Copyright © 2015, Elsevier.  



www.manaraa.com

16 
 

dioxide) and the EPA is currently limiting methane emissions from landfills [10]. In addition, 

biogas can be generated from the anaerobic digestion of biomass and syngas can also be obtained 

using natural gas in combination with flue gas from fossil fuels. The underlying theme of these 

approaches is dry reforming.  

The dry reforming process utilizes carbon dioxide to help reform methane and obtain 

hydrogen and carbon monoxide as products through the following reaction (2.1): 

CH4+CO22H2+2CO  𝛥𝛥𝛥𝛥° = 247.3𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�     (2.1) 

The produced syngas can then be utilized for fuel synthesis of hydrocarbon and oxygenate 

fuels and chemicals when combined with steam reforming or the WGS reaction. The endothermic 

dry reforming reaction readily occurs at high temperatures [21]. However, that also adds to the 

overall cost of the process on an industrial scale, as methane is often parasitically combusted to 

generate the heat. The DRM reaction is thermodynamically predicted to not occur at temperatures 

below 350°C with coking being the only possible pathway at such low temperatures[7, 22]. Low 

temperature dry reforming of methane could reduce the cost making it industrially more viable. 

This work demonstrates low temperature reforming activity, stability, and the components required 

for an active catalyst.  

The reforming temperature is affected by both the support and the catalyst used. Many 

supports have been investigated for dry reforming of methane including silica, alumina, (Ce,Zr)O2 

and perovskites [19, 30, 31]. For this work, a mixed ceria-zirconia oxide support (Ce0.6Zr0.4)O2 

was chosen for a variety of reasons. Literature shows that ceria has a high oxygen storage capacity 

(OSC) which is useful for the reaction in enhancing the reducibility within the fluorite lattice [41]. 

The ratio chosen for this work was also shown to have the highest catalyst activity and stability 

versus other compositions [1, 31]. Adding zirconia which has a smaller ionic size, helps create a 
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lattice strain which in turn causes high oxygen mobility that help improve the redox properties [42, 

43]. In addition, (Ce,Zr)O2 is thermally stable at high temperatures [31, 41].  The addition of 

zirconia to ceria also helps to shift the oxygen vacancies to the more stable surfaces (111) and 

(110). This oxygen shift aids in moving the reduction equilibrium to the right by utilizing bulk 

oxygen which in turn significantly favors bulk reduction [44].  

Nickel-based catalysts have been widely investigated for dry reforming of methane due to 

the abundance of nickel, high activity and the economically feasible cost [3, 7, 27, 48, 49]. 

However, they have a major disadvantage of rapid deactivation and coke formation especially in 

biomass feedstock due to the presence of sulfur-containing impurities [7, 49, 51]. Adding a small 

amount of noble metal such as platinum can help decrease coking and enhance catalytic stability 

and activity [31, 42, 64]. Adding platinum also helps reduce ceria to Ce3+ and create oxygen 

vacancies [65]. Moreover, Pt, even in low loadings, could provide active sites for the conversion. 

In addition, adding MgO can help to increase the Lewis basicity of the support [7, 66]. This solid 

solution enhances CO2 adsorption by adding stability to the Ni crystallites which can reduce carbon 

deposition from CO disproportionation [2, 7].  

The main goal of this work was to examine the effects of different platinum loadings on 

structure, properties, and dry reforming performance of metal based catalysts immobilized onto a 

ceria-zirconia support. The addition of a precious metal in low loadings to a Ni-based catalyst is a 

viable way to achieve low temperature reforming catalysis. The support was synthesized via co-

precipitation and metals were loaded via wetness impregnation. Reduction experiments (TPR) 

showed that adding Pt onto the catalyst favorably decreased the reduction temperature but the 

impact became less prominent with increasing Pt loading. In addition, CO2 temperature-

programmed desorption (TPD) studies showed that the addition of Ni and Mg increased catalyst 
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basicity, but the further addition of Pt led to a slight decrease in basic sites. The results of this 

study demonstrate that the balance between reducibility and basic sites are the influential factors 

in enhancing the low temperature dry reforming activity in this catalyst system and lead to high 

activity. The study also demonstrates improvements beyond both the control catalysts that do not 

contain either Ni and Mg or Pt. The catalysts in this study has among the highest activity for low-

temperature (compared at T=450°C) dry reforming in the literature for catalysts not containing Rh 

or Ir.  

2.2 Experimental 

2.2.1 Materials and Synthesis 

Ceria-Zirconia was prepared via the co-precipitation method as reported by Rossignol et 

al. [67] in a ratio of 0.6:0.4. The (Ce0.6Zr0.4)O2 support was made in batches of 12 grams by 

weighing 8.7 grams of the cerium precursor Ce(NO3)3 x 6H2O-(99.5% pure; Alfa Aesar) and 3.3 

grams of zirconium precursor ZrO(NO3)2 x H2O-(99.9% pure; Alfa Aesar). The precursors were 

then dissolved in 150 mL of deionized water in a large beaker. About 75 ml of ammonium 

hydroxide (27% w/w NH3; Mallinckrodt Chemicals) was added to the beaker in 10 mL increments 

to precipitate the precursors until a clear liquid layer was visible on top of the beaker indicating 

complete precipitation. The mixture was vacuum filtered and then re-dissolved in 0.25M NH4OH 

solution. The solution was vacuum filtered a second time. The filtrate was dried in an oven at 60°C 

for 1 hr, then 120°C for 12 hr. Finally, the powder was calcined at 800oC for 4 hr. 

Nickel (1.34% by mass), magnesium (1.00% by mass), and platinum were loaded on the 

support via incipient wetness impregnation. Platinum was loaded at 0.07%, 0.16%, 0.33% and 

0.64% by mass ratio. The nickel precursor Ni(NO3) 2 x 6H2O (99.9985% pure; Alfa Aesar), the 

magnesium precursor Mg(NO3)2 x H2O (99.999% pure; Alfa Aesar) and the platinum precursor 
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H2PtCl6 x 6H2O (Sigma-Aldrich) were used for the metal loadings. The desired amount of each 

metal was weighed and all of the precursors were dissolved in an appropriate amount of deionized 

water (1-2 mL) in one beaker. The solution was then added drop wise onto the support until 

incipient wetness. The powder was then dried in an oven for 2 hr at 120°C to remove any volatile 

components and evaporate the water. The process was repeated until all the solution was added. 

After the final drying, the powder was calcined at 600oC for 3 hr. A control sample that contained 

no nickel and magnesium was synthesized the same way as mentioned above.  

2.2.2 Catalyst Characterization 

The synthesized catalyst was characterized using TPR, XRD, N2 physisorption, and CO2-

TPD. Temperature-programmed reduction (TPR) was done using a Cirrus MKS mass spectrometer 

(MS) connected in-line with the reactor containing 50 mg of calcined catalyst. The catalyst was 

loaded between two layers of quartz wool. The reactor was then positioned inside a 

Thermoscientific Thermolyne tube furnace and high temperature glass wool was added to insulate 

the top of the furnace. Feed gases were controlled using Alicat Scientific mass flow controllers. 

All of the gas feed and outlet were wrapped in heating tape to prevent condensation prior to 

entering the MS. The furnace temperature was controlled using a Eurotherm 3110 PID controller. 

Each catalyst sample was pretreated under an ultra-high purity (UHP, Airgas) helium flowrate of 

50 sccm at 110°C for 30 min using a ramp rate of 10°/min. The sample was then allowed to cool 

to 50°C and then the gas flow was switched to 5% H2/He (50 sccm). The sample was then heated 

at a ramp rate of 10°/min to 900°C and held for 30 min. For the data analysis, calibration curves 

were measured to calculate the ionization factors.  
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X-ray diffraction (XRD) was done to determine the crystal structure using a Bruker AXS 

operating with a Cu Kα source at 40 kV and 40 mA. The data were obtained using a (2θ) angular 

range of 15-80°. The step size was 0.02° and the dwell time was 3 sec for each step.  

BET surface areas and pore volumes were obtained using a Quantachrome Autosorb-IQ. 

Each experiment was done using 50 mg of catalyst. The sample was first pretreated at 120°C for 

2 hr. The sample was then loaded in a small-bulb 6 mm quartz cell. Then, the sample was backfilled 

with He and outgassed under vacuum for 1 hr. The surface area values were obtained by fitting the 

data to BET isotherm in the P/P0 range of 0.05-0.33 using N2. The pore volume is reported at P/P0 

of ~1. The BJH method was used to determine the average pore size.  

CO2 temperature-programmed desorption (CO2-TPD) studies were done to determine the 

catalyst basicity using the same system already described in the TPR section. The catalyst (75.5 

mg) was initially reduced at a temperature of 300°C in a 5% H2 in He gas mixture and held at the 

reduction temperature for 1 hr. The catalyst was then cooled under He only until a temperature of 

50°C was reached. After the temperature stabilized, a 10% CO2 in He was introduced to the catalyst 

and flown for 30 min. The catalyst was then purged by flowing He only for another 30 min. The 

temperature was then increased to 800°C at a ramp rate of 10°C/min and held for 10 min.  

2.2.3 Catalytic Testing 

Reactions experiments were done in a quartz u-tube microreactor with an internal diameter 

of 4 mm. All reactions were done at atmospheric pressure using 75.4-75.7 mg of catalyst. The 

same system described in the TPR section was utilized. The catalyst was first reduced at a 

temperature of 300°C in a 5% H2 /He for 1 hr. For the temperature-programmed reactions (TP-

rxns), the temperature was then decreased in He (50 sccm) to 200°C and then reforming gas 

mixture was introduced once this temperature was reached. Methane and carbon dioxide, (both 
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99.999% pure from Airgas), were introduced in a 1:1 ratio with a total composition of 14% 

reactants in He gas (44 sccm total flow). The temperature was then increased to 900°C at a 

10°C/min ramp rate and held there for 30 min. The gas hourly space velocity (GHSV) was 

maintained constant at 68,000h-1 for all reactions unless otherwise stated. Methane and carbon 

dioxide conversions were calculated using the following formulas (2.2 and 2.3): 

CH4 conversion = 1 − (𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑜𝑜)
(𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖)

         (2.2) 

CO2 conversion = 1 − (𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑜𝑜)
(𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖)

        (2.3) 

Steady-state data were collected using a similar procedure. After the reduction and cooling 

to 200°C in He, the reforming gas mixture was introduced and the temperature was raised to 

470°C. Once steady-state was reached, the temperature was decreased by 10°C and this was 

repeated until 430°C. TOFs were calculated from the steady-state CO2 conversion at the various 

temperatures, using the amount of CO2 desorbed from the CO2 TPD to estimate the number of 

sites. The Weisz-Prater criterion was calculated to be ~10-3 which is <<1 indicating that there were 

no internal diffusion limitations. External mass transfer limitations were determined to be 

negligible at the GHSV used (determined by testing a series of GHSVs). Regardless of GHSV for 

the 0.16Pt catalyst, the H2:CO ratio was largely independent of it at T = 450°C and was ~ 0.27 to 

0.30, as determined by a separate set of experiments. In a final experiment for the 0.16Pt catalyst, 

its stability was tested during an extended time-on-stream (TOS) of 100.5 hr.  

A temperature-programmed oxidation study was done following each of the TP-rxn 

experiments and selected steady-state experiments to quantify the presence of carbon deposits. 

After reaction experiments, the catalyst was rapidly cooled to 60°C under He (50 sccm). A 10% 

oxygen in He gas mixture (50 sccm total) was then introduced to the catalyst. The temperature was 
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then increased to 900°C using a 10°C/min ramp rate and held for 1 hr. No coke formation was 

detected from any of the samples.   

2.3 Results and Discussion 

For this work, a series of catalysts were synthesized on a Ce0.6Zr0.4O2 support. The 

synthesized catalysts were 1.34%Ni1.00%Mg-Ce0.6Zr0.4O2 (0Pt), 0.16%Pt-Ce0.6Zr0.4O2 

(0.16Pt/CeZr), 0.07%Pt-1.34Ni1.00Mg-Ce0.6Zr0.4O2 (0.07Pt), 0.16%Pt-1.34Ni1.00Mg-

Ce0.6Zr0.4O2 (0.16Pt), 0.33%Pt-1.34Ni1.00Mg-Ce0.6Zr0.4O2 (0.33Pt), 0.64%Pt-1.34Ni1.00Mg-

Ce0.6Zr0.4O2 (0.64Pt). The baseline sample (Ni and Mg, but not Pt) was used for tri-reforming by 

our group in a previous study [1], which optimized the Ni and Mg loadings and the Ce:Zr ratio for 

activity and stability purposes. The notation used for each catalyst from this point forward is 

included in Table 2.1.  

2.3.1 Characterization 

The effect of metal immobilization on the surface area of the support and the pore volumes 

was examined by N2-physisorption and is reported in Table 2.1. The synthesis method and ceria 

to zirconia ratio have a large effect on the surface area of the support which is the reason the 

literature values range from 35 to149 m2/g [1, 18, 31, 68, 69]. Previously published studies have 

shown that high ceria content has been identified to cause pore blockage of the zirconia and 

decrease the overall surface area [18, 67, 70].  

For this work, the oxide support had the highest surface area of 146 m2/g which is similar 

to reported values in literature [31]. The surface areas decreased as the metals were loaded as well 

as the measured pore volumes as reported in Table 2.1. A similar decrease upon metal loading was 

observed in literature and it was attributed to the pore blockage and sintering by the loaded metals 

[1, 71, 72]. The decrease in the pore diameters upon loading also contributed to the decrease in 
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pore volume. The BJH pore size distribution curves for all samples is included in Figure 2.1. 

Whereas the main pore diameter decreases its width upon loading, the smaller pores tended to be 

completely blocked. This result is in agreement with the change in surface areas and pore volumes 

between the support alone and the supported catalysts.  

 
Figure 2.1: BJH pore size distribution of all samples. The support (CeZr) had the most pores 
and the largest pore size. The pore size decreased with increasing metal loading. 

 
XRD was conducted to ensure that the support is correctly synthesized and the metals are 

loaded onto the surface. The results are shown in Figure 2.2. The (Ce0.6Zr0.4)O2 pattern showed no 

evidence for the monoclinic phase which are characteristic of ZrO2. However, the pattern is 

consistent with a cubic fluorite structure as is previously reported in literature [1, 39, 68]. This 

finding suggested that the ZrO2 is incorporated into the CeO2 lattice. As reported previously,[73] 

the asymmetry of the diffraction lines also suggested the presence of multiple ceria-zirconia solid 

solution phases of various compositions. The third diffraction pattern (0Pt) showed the support 

with only nickel and magnesium loaded. NiO and MgO diffraction lines can be seen around a 2θ 
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of 42-44° proving that the metals are deposited onto the support. The diffraction patterns of the 

catalysts with different platinum loadings are also shown in Figure 2.2. Since the platinum content 

is low and is most likely highly dispersed on the support, no significant diffraction lines related to 

platinum are observed in the diffraction patterns. This result agreed with other groups who have 

made similar observations [72]. It is unclear whether the Pt is evenly distributed across the surface 

or is preferentially adsorbed the support or the (Ni,Mg)O2 phase. In addition, post-reaction and 

post-reduction XRD patterns were obtained on select catalysts and there were not any observable 

diffraction shifts or changes.   

Table 2.1: Surface, bulk properties, reduction temperatures, and CO2 adsorption data.  

Sample Notation SBET 
(m2/g) 

Pore 
Volume 
(cc/g) 

Pore 
Diameter 
(nm) 

Reduction 
Temperature 
(°C) 

Amount  
CO2-desorbed 
(µmole/g.cat) 
(Temp 50- 
400°C) 

Ce0.6 Zr0.4 O2 CeZr 152a 0.35 a 14.1a 618 0.38 

0.16%Pt- Ce0.6 
Zr0.4 O2 

0.16Pt/ 
CeZr 70 0.16 11.4 196-480 0.71 

Ce0.6 Zr0.4 O2 -
1.34Ni1.00Mg 0Pt 40 0.10 11.4 382 1.40 

0.07%Pt- Ce0.6 
Zr0.4 O2 -
1.34Ni1.00Mg 

0.07Pt 30 0.08 11.4 283 1.29 

0.16%Pt- Ce0.6 
Zr0.4 O2 -
1.34Ni1.00Mg 

0.16Pt 31 a 0.07 a 11.6 a 248 a 1.30 

0.33%Pt- Ce0.6 
Zr0.4 O2 -
1.34Ni1.00Mg 

0.33Pt 34 a 0.09 a 11.3 a   247 a 1.07 

0.64%Pt- Ce0.6 
Zr0.4 O2 -
1.34Ni1.00Mg 

0.64Pt 22 0.05 11.4 242 0.98 

a The average of two different samples is reported. 



www.manaraa.com

25 
 

 
Figure 2.2: XRD pattern of catalysts. The (   ) represents the (111) and (  ) represents the 
(200) NiO and MgO diffraction lines as shown in the insert for the 0Pt sample. The Miller 
indices refer to the cubic fluorite (Ce,Zr)O2 phase (except for the insert).  

 
TPR was utilized to characterize the catalyst’s reducibility. In addition, it also shows how 

different species within the catalyst interact with each other [1, 74]. The results of the temperature-

programmed reduction experiments on the calcined materials can be seen in Figure 2.3 and are 

summarized in Table 2.1. The support alone had a reduction peak at 618°C, which was consistent 

[75] with previous findings. Adding Ni and Mg shifted the reduction peak to 382°C. This result 

agreed literature that nickel helps the ceria to become more reducible by producing mobile oxygen 

[39]. However, the nickel-based catalyst without any platinum content reduced at a much higher 
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temperature than catalysts with platinum. The addition of platinum helped further decrease the 

reduction temperature significantly at first with smaller shifts in reduction as Pt content increased. 

The catalyst that did not have any nickel or magnesium but had platinum displayed a small but 

very wide reduction peak that ranged from 196°C to 490°C. This implies that the platinum 

interaction with the support has a significant effect on increasing the reducibility of the ceria 

support as well [76-78]. Platinum helps reduce the oxide phases through its affinity to facilitate 

dissociative hydrogen adsorption. Hydrogen has been identified to adsorb and dissociate on the 

surface of the platinum whereby it spills over to the entire surface of the ceria [77]. The impact of 

Pt becoming less prominent with increasing Pt loading likely occurred because the dispersion of 

the Pt crystallites probably increased with loading.  

 
Figure 2.3: TPR profiles of catalysts. Indicative arrows show signal to legend trend of the 
curves. 
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There is no general consensus in literature as to which species contributes to each of the 

two main reduction peaks whether it is as a result of the support or NiO. Kumar et al., Walker et 

al., and Diskin et al. [1, 31, 79] agreed that the low temperature reduction peak (600°C and below) 

is attributed to the NiO species. Escritori et al. and Roh and Dong et al. [27, 39, 68] attributed the 

low temperature reduction peak to the surface region of cerium oxide that is promoted by weakly 

bound loaded nickel, whereas the higher temperature reduction peak (800 to 900°C) was attributed 

to the bulk ceria promoted by strongly bound NiO species. Literature has shown unsupported NiO 

to have a first early reduction peak in the 400-430°C range [39, 68]. For this work, it was 

determined that the initial reduction temperature is most likely as a result of the weakly bound NiO 

species. The second reduction peak is most likely attributed to the NiO species with strong 

interaction with the support [27, 39, 68]. 

From the reduction profile of (CeZr)O2, it is clear that the support was reduced in 

agreement with others [18, 65, 80]. Addition of NiO onto the support caused a decrease in the 

reduction temperature to 382°C which is below the previously reported NiO reduction temperature 

of 405°C [39]. Addition of platinum further decreased the reduction temperature, which 

corroborated with literature [18, 65, 81]. Based on the trend and the width of the peaks in the 

reduction profiles, it is believed that the support is what is mainly getting reduced. However, the 

metal oxide materials also get reduced which is evident by the sharpness of the reduction peaks 

for the metal loaded samples. As a result of the metal interaction with the support, they help lower 

the reduction temperature of the support [72, 81]. This increase in the supports’ reducibility occurs 

as a result of increasing the mobile oxygen.  

Temperature-programmed desorption of CO2 experiments done on the reduced catalysts 

are provided in Figure 2.4 and the results are summarized in Table 2.1. All metal supported 
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catalysts displayed a strong initial peak in the range <200°C and had a large profile that extended 

to about 400°C. The support alone only had a double peak from 100-200°C. This result is 

consistent with findings in literature [39] which suggest that ceria adds medium basic sites as a 

result of its large OSC which aids in capturing and releasing oxygen. Adding NiO and MgO 

improved the basicity of the support as the amount of CO2 adsorbed increased from 0.38 

µmole/g.cat in the support only sample to 1.40 µmole/g.cat in the catalyst with nickel and 

magnesium [7].  This finding was expected because Mg was anticipated to add surface basicity. 

This effect was greater than the effect of adding platinum alone to the support which only yielded 

an adsorbed amount of 0.71µmole/g.cat.  This decrease in adsorbed CO2 amount with Pt loading 

is correlated to the surface area and pore volume decreases reported in Table 2.1. Literature 

attributes the lower CO2 desorption for the platinum catalysts to the dense nature of the oxygen 

vacancies [82]. 

 
Figure 2.4: TPD-CO2 of reduced catalysts. Arrows indicate the signal to legend trend. 
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2.3.2 TP-Rxn Results 

Both 10% conversion and 50% conversion temperatures of CH4 and CO2 are reported in 

Table 2.2 as X10 and X50, respectively. Results showed 10% methane conversion was achieved at 

828°C using only the ceria-zirconia support. In addition, 10% carbon dioxide conversion was 

achieved at 787°C. Adding nickel and magnesium effectively lowered the conversion temperature 

to 762°C and 742°C for methane and carbon dioxide, respectively. The addition of platinum further 

decreased the conversion temperature. Adding Pt alone to the support without Ni and Mg 

significantly decreased the X10 and X50 temperatures. However, adding Pt along with Ni and Mg 

gave the lowest X10 and X50 temperatures as reported in Table 2.2. The 0.16Pt catalyst showed the 

most desirable results with an X10 for methane at 454°C and for carbon dioxide at 437°C. The 

equilibrium carbon dioxide conversion, in the absence of coke formation, of 10% would occur at 

approximately 400°C [22]. High carbon dioxide conversions, relative to methane conversions for 

a given sample, occurred due to the reverse WGS (rWGS).    

The H2: CO ratio was highest in the catalysts with 0.07Pt and 0.16Pt as reported in Table 

2.2. From the trend, it is evident that the H2: CO ratio decreases with increasing platinum content. 

This trend is likely a result of decreased platinum dispersion as the amount of platinum increases. 

In addition, H2:CO was not close to the desired 1:1 ratio. The low H2: CO ratio is attributed to the 

rWGS simultaneously occurring at the low temperatures used for this work. This is further proved 

by a visible water signal in the MS output data and consistent with other published works [18] and 

with the thermodynamics. Other published works have shown a H2: CO ratio of 0.05-0.3 for low 

temperature dry reforming of methane as well [62]. In the post-reaction TPOs, carbon dioxide 

produced from coke combustion was not detected in any experiment. This finding is consistent 

with that the base catalyst (0Pt) was optimized (in terms of Ni and Mg loading and Ce:Zr ratio) for 
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anti-coking behavior in a previous study [15] and the water formation from the rWGS because 

water would be better at oxidizing coke deposits than CO2.  

Table 2.2: Temperature-programmed reaction results for the various catalysts. 
 

 Sample X10 CH4 
Temperature 
(°C ) 

X50 CH4 

Temperature 
(°C ) 

X10 CO2 
Temperature 
(°C ) 

X50 CO2 
Temperature 
(°C ) 

H2:CO 
(@450°C) 

CeZr 828 n/a 787 n/a n/a 

0.16Pt/CeZr 504 641 488 625 0.23 

0Pt 762 848 742 813 n/a 

0.07Pt 464 611 450 586 0.35 

0.16Pt 454 603 432 578 0.30 

0.33Pta  479 608 467 590 0.21 

0.64Pt 493 613 479 595 0.22 
a Reporting the average values of two samples. 

The activity trends as a function of two descriptors (peak reduction temperature and 

number of basic sites) for all catalysts examined in this study is shown in Figure 2.5. The relative 

activity correlates to the marker size, with larger markers indicating more activity (as defined as 

inversely proportional to the X10 temperature, Table 2.2). Compared to the catalyst without Pt 

(0Pt), the decrease both in the amount of basic sites and peak reduction temperatures correlated to 

increasing Pt amounts. Thus, one of the intermediate Pt loadings (i.e., the 0.16Pt sample) yielded 

the highest dry reforming activity. Since the optimal Pt loading was low, the high platinum 

dispersion also likely aided in the high activity. High Pt dispersion has been identified to help 

improve dry reforming activity [18, 72, 83]. 
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Figure 2.5: Dry reforming activity trends. Adding Pt increased the number of basic sites 
leading to higher activity for dry reforming. Note that the size of the circles is directly 
proportional to the activity. 
 
2.3.3 Steady-State Reaction Results 

Steady-state experiments were conducted using the 0.16Pt catalyst, with the same feed and 

space velocity as the TPRxns. First, an isothermal (T = 450°C) stability (TOS = 100.5 hr) test is 

described. During the initial heating in the presence of reactants, results showed methane (X10) 

conversion at 444°C (10°C different than shown in Table 2.2) and carbon dioxide (X10) conversion 

at 430°C (2°C different than shown in Table 2.2). At T = 450°C, the catalyst showed slight 

deactivation (CH4 conversion only) over the course of the 100.5 hr on stream (Figure 2.6). The 

average H2:CO ratio during this TOS was 0.32 and this result agreed with the temperature-

programmed value (0.30) for this sample (Table 2.2). Despite the lengthy TOS, this catalyst 

showed no coking as measured by a post-reaction TPO (Figure 2.6 insert). 
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Figure 2.6: CH4 and CO2 conversion from 100.5 hr stability test. Insert shows post-test TPO 
with no coking present. 
 

In a separate experiment, turnover frequencies (TOFs) were obtained for the steady-state 

CO2 conversion (normalized by the total CO2 amount desorbed) of the same, most active sample 

(0.16Pt) in the temperature range of 430-470°C. At the lowest temperature (430°C), the TOF was 

2.69s-1. The TOF increased with increasing temperature with values of 3.17s-1, 3.50s-1, 4.22s-1, and 

4.74s-1 at respective temperatures of 440°C, 450°C, 460°C, and 470°C. Literature reported 

comparable TOF for 3.8% Rh/SiO2 catalyst where the values were between 1.5-3.6s-1 at 450°C 

and 0.1MPa depending on the space [22] velocity. The TOFs were calculated from the CO2 

conversion using TPD site density (assuming 1:1 CO2:site). Since it was assumed constant, the 

rate of CO2 conversion is TOF*site density. The methane rates would be slightly lower since the 

methane conversion was lower than CO2 conversion, due to the reverse water-gas shift reaction. 

The apparent activation energies were calculated to be 18.5 and 14.8 Kcal/mol from the 

respective CH4 and CO2 conversion data and these value were consistent with the literature (Tables 
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2.3 and 2.4). A comparison of different catalysts and their respectively reported activation energies 

is included in Table 2.3. Qualitatively, lower apparent activation energies for CO2 as compared to 

CH4 makes sense since multiple pathways (dry reforming and rWGS) are more likely to exist and 

corroborated with the results of Table 2.3.  

Table 2.3: Activation energies of different metal-based catalysts. 
 

Catalyst 
Apparent Activation 
Energy (Kcal/mol) Conditions a Reference 

CH4 CO2 

0.16Pt 18.5 14.8 430-470 °C This study 

5%Ni/CaO-Al2O3 25.5 23.6 620-690 °C [3] 

Ni/Ɣ-Al2O3 12.2 13.4 500-700 °C [49] 

CeO2-ZrO2 24.1 n/c 400-630 °C [69] 

Ni(100) 17.7±2.4 n/c 171-253 °C 
P= 4.4 mbar [84] 

Ni/CZ 16-18.9 n/c 550-840 °C [85] 

Pt/ZrO2 n/c 19.8 600 °C 

P=25kPa [86] 

0.2Pt-15Ni/ CaO-
Al2O3 

26.6 16.9 580-620 °C [87] 
a Pressure is 1 atm unless otherwise noted. 
n/c refers to not calculated 

Activation energies and turnover frequencies from a number of studies are compared as 

shown in Table 2.4. Ni and Pt are included since they are used in the current study and Rh and Ir 

are included because they are the most active. Since SiO2 in general is an inert supports, its use in 

supported catalysts are included as well as the support which yields the most active catalyst for 

each immobilized metal. The various activation energies and original conversion studies are 

available as the reference column. The actual TOF values are the corrected values published by 

Bradford et al [7]. In general, the TOF values were corrected using the reported activation energies 
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and concentration dependencies (as described in the footnotes of Table 2.4) to conditions of their 

studies (T = 450°C, PCO2 = PCH4 = 195 torr). 

In this compilation of TOFs, most of the original studies have estimated the value based 

on methane conversion and the number of available metal sites from H2 or CO chemisorption. 

Since methane is activated by the metal sites, it is a good assumption that the sites for methane 

activation at least correlate to the available metal surface area that can chemisorb these probe 

molecules even if it is not exactly matching. Whereas this approach is common, there is also 

generally a desire to use a reactant molecule to determine the number of actives sites. Since, in this 

study, both metallic Ni and Pt sites may activate methane (as seen in dry reforming activity for the 

control catalysts), basic sites that are able to adsorb acidic CO2 was selected to determine the 

number of active sites for normalization of the CO2 conversion rate. Thus, differences in TOFs 

could be embedded in the choice of quantifying the active sites and the selection of CO2 or CH4 

conversion rates, though the latter is expected to be minimal because these would be equal when 

there are no side reactions.  

The CO2 TOF value from the present study was corrected to these conditions using the 

correction factors of 0.5 order for CH4 and 0.25 order for CO2. These are the same correction 

factors as used for the Ni/La2O3, [36, 40] which is the most active sample from the literature not 

containing Ir or Rh. It should be noted that the present study was performed at the same 

temperature as the comparison whereas the Ni/La2O3, [36, 40] was used in dry reforming at T > 

450°C and corrected to the same conditions used by Bradford et al. [7] for comparison purposes. 

From Table 2.4, it is evident that the catalyst used for the current study had one of the highest TOF 

surpassed only by Rh/SiO2 and Ir/TiO2. 
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Table 2.4: Literature comparison of apparent activation energies and turnover frequencies 
(TOFs) at T= 450 °C for selected catalysts. 
 

 Metal Catalyst 
Apparent Activation 
Energy (Kcal/mol)a TOF 

(s-1) a Reference b 

CH4 CO2 CO 

Pt 

0.16Pt 18.5 14.8 n/c 9.6 c This study 

Pt/SiO2 n/c 19 n/c 0.85 [88, 89] 

Pt/TiO2 n/c 19 n/c 4.4 [88, 89] 

Ni 
Ni/SiO2 13 n/c n/c 0.61 [90] 

Ni/La2O3 n/c n/c 15 9.2 [36, 40] 

Rh 
Rh/SiO2 n/c 23 n/c 0.14 [91] 

Rh/TiO2 n/c 18 n/c 25 [89] 

Ir 
Ir/SiO2 n/c n/c 42 0.04 [92] 

Ir/TiO2 n/c 18 n/c 22 [89] 
a Activation energies and TOFs as reported by Bradford et al. [7]. TOFs have been corrected to 
their standard conditions  
b Original references for the reported values  
c TOF of 3.5 s-1 corrected to higher partial pressures of CH4 and CO2 using approach of  Bradford 
et al. [7], which is 0.5 order for CH4 and 0.25 order for CO2 
n/c refers to not calculated 
 
2.4 Conclusion 

Low temperature (430 to 470°C) dry reforming of methane was studied over different metal 

based catalysts on a ceria-zirconia oxide support. The combination of Pt with NiMg/(Ce,Zr)O2 

catalysts increased the low temperature dry reforming activity compared to the control catalysts 

without Ni and Mg and Pt. The activity increase is attributed to the high dispersion and synergistic 

effects between the platinum and oxide phases, which is correlated to the reduction temperature 

and the number of basic sites. The study proposed a complex catalyst system in which a 

conventional reforming catalyst (NiMg/(Ce,Zr)O2) is modified by a precious metal to balance the 
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conversion of both reactants. As a result, high conversions were achieved at low temperatures, 

which is also evident in the comparison of TOFs to the literature values. Minimal deactivation 

occurred for the long-term testing. Further research is needed to examine the active site 

requirements for both CO2 and CH4, as well as increasing the H2:CO ratio through the addition of 

steam (bi-reforming) to the feed to decrease the driving force for the rWGS reaction. 
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CHAPTER 3: COMPARISON OF PD-NI-MG/CERIA-ZIRCONIA AND PT-NI- 
 

MG/CERIA-ZIRCONIA CATALYSTS FOR SYNGAS PRODUCTION VIA LOW  
 

TEMPERATURE REFORMING OF MODEL BIOGAS2 
 

3.1 Introduction 

Biomass-derived syngas (H2 and CO) can be used as a feedstock for Fischer Tropsch 

Synthesis (FTS) to produce diesel and jet fuel. Biomass is considered as an alternative fuel as it 

offers many advantages and can be obtained from a variety of sources.  Biogas produced from 

biomass is derived from agricultural crops, animal wastes, sludge digesters and municipal solid 

waste (MSW). For instance, biogas derived from anaerobic MSW digestion, known as landfill gas 

(LFG) which accounts for 18% of all methane emissions [15], can be used as a renewable 

feedstock. In addition, it has the potential to have a zero carbon footprint as well as decreased 

emissions of methane and carbon dioxide, the two most abundant greenhouse gases, into the 

atmosphere. Dry reforming of methane (reaction 3.1) which only utilizes carbon dioxide as the 

oxidant has been shown to give H2:CO ratios (≤1) [18-20] as can be seen in the following reactions 

where dry methane is coupled with the water-gas shift (reaction 3.2): 

                                                 
2 Reprinted with permission from N. H. Elsayed, N. M. Roberts, B. Joseph, and J. N. Kuhn. 

Comparison of Pd-Ni-Mg/ceria-zirconia and Pt-Ni-Mg/ceria-zirconia catalysts for syngas 

production via low temperature reforming of model biogas. Topics in Catalysis 59.1 (2016): 138-

146. Copyright © 2016, Springer.  
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CH4+CO22H2+2CO                                                            𝛥𝛥𝛥𝛥° = 247.3 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�    (3.1) 

CO+H2OCO2+ H2                                                               𝛥𝛥𝛥𝛥° = −41 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�        (3.2) 

A desired H2:CO of 2:1 is necessary for FTS to produce longer chain hydrocarbons (C10+) 

[23-25], though lower values are desirable for alcohols, acetic acid, and alkenes [26]. Coupling 

dry reforming with steam reforming (bi-reforming, reactions 3.1 and 3.3) and/or partial oxidation 

of methane (tri-reforming, reactions 3.1, 3.3, and 3.4) can improve the H2:CO ratio [1, 28, 29] as 

shown in the following reactions: 

CH4+H2O3H2+CO  𝛥𝛥𝛥𝛥° = 206.3 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�     (3.3) 

𝐶𝐶𝐻𝐻4 + 1
2� 𝑂𝑂2𝐶𝐶𝐶𝐶 + 2𝐻𝐻2       𝛥𝛥𝛥𝛥° = −35.6 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�   (3.4) 

The reforming reaction is thermodynamically not predicted to occur at temperatures below 

350°C but readily occurs at temperatures greater than 600°C [1, 7, 93]. Using noble metal catalysts 

can help drive the reaction to lower temperatures making it more economically feasible and also 

open possibilities for intensified processes. Coupling low temperature (T<600°C) dry reforming 

with heat from solar energy as an example can help reduce or eliminate the need for heating by 

natural gas combustion [32]. The current work focuses on low temperature dry reforming of 

methane, as a model of biogas, using Pt or Pd doped nickel magnesium catalysts. 

Many supports have been investigated for dry reforming, bi-reforming and tri-reforming 

of methane. Studied supports have included different silicates, ceria, alumina, zirconia, lanthanum 

oxide, perovskites and magnesium oxide [19, 30, 31, 36-38]. The support used for this study was 

a (Ce, Zr)O2. The ratio chosen for the support, Ce0.6Zr0.4, was determined to be the best ratio in 

terms of activity and surface area by previous studies done in this group [1].  
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Nickel has been widely studied as a methane reforming catalyst [2-6]. Alone, nickel atoms 

are prone to carbon deposition especially during methane decomposition. The length between Ni-

Ni bonds increases as carbon atoms adsorb thereby allowing deeper penetration until more layers 

of graphitic carbon form eventually deactivating the catalyst [7]. However, coupling NiO with 

MgO helps to reduce carbon deposition by reducing agglomeration of Ni crystallites, thereby 

improving catalyst lifetime [2, 7]. Furthermore, addition of noble metals such as Pt and Pd helps 

the catalyst to reduce at lower temperatures [20, 53, 56]. This is due to noble metals’ high affinity 

for hydrogen atoms which in turn reduces the amount of carbon deposits. In addition, noble metals 

affect the basicity of the catalyst thereby changing the amount of carbon dioxide adsorbed. This 

effect is caused by a shift in surface coverage that allows for more stability to intermediates formed 

after methane decomposition and CO disproportionation [7, 20].  

The goal of this study is to compare the catalyst properties of Pt or Pd doped Ni-Mg ceria-

zirconia catalysts for low temperature (below 500°C) dry reforming of methane. Nickel catalysts 

are well known as reforming catalysts but suffer from rapid deactivation via coke formation. 

Addition of MgO helps to increase the Lewis basicity and adds stability to the Ni crystallites [7, 

66]. Furthermore, addition of small quantities of noble metals have the ability to decrease the 

reduction temperature as TPR studies proved. Noble metals can also improve catalyst activity as 

reaction studies have shown.  

3.2 Experimental Section 

3.2.1 Synthesis and Materials 

The ceria-zirconia support was synthesized in a 0.6:0.4 ratio respectively using the co-

precipitation method described elsewhere [67]. Each batch of support was synthesized by weighing 

8.7 grams of the cerium precursor Ce(NO3)3 x 6H2O-(99.5% pure; Alfa Aesar)  and 3.3 grams of 
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zirconium precursor ZrO(NO3)2 x H2O-(99.9% pure; Alfa Aesar). Both precursors were dissolved 

together in 150 mL of deionized water in a large beaker. Then, ammonium hydroxide (75 mL; 

28% w/w NH3; Sigma Aldrich) was added to the beaker slowly to precipitate the precursors until 

a clear liquid layer was visible on top of the beaker indicating complete precipitation. The mixture 

was then stirred and vacuum filtered until it was visibly dry. The filtrate was then re-dissolved in 

0.25M NH4OH solution and vacuum filtered a second time. The filtrate was dried in an oven at 

60°C for 1 hr, then 120°C for 12 hr. Finally, the powder was calcined at 800oC for 4 hr. 

Incipient wetness impregnation was used to load the metals, nickel (1.37-1.39% by mass), 

magnesium (1.00% by mass), platinum (0-0.64% by mass), and palladium (0-0.51% by mass) onto 

the support. The nickel precursor Ni(NO3)2 x 6H2O (99.9985% pure; Alfa Aesar), the magnesium 

precursor Mg(NO3)2 x H2O (99.999% pure; Alfa Aesar), the platinum precursor H2PtCl6 x 6H2O 

(≥37.5% metal basis, Sigma-Aldrich), and the palladium precursor (NH4)2PdCl6 (99.99%, Sigma 

Aldrich). After weighing the desired amount of precursors, deionized water (2 mL) were used to 

dissolve them. The solution was then added drop wise onto the support until incipient wetness. 

The resulting wet powder was then dried in an oven for 2 hr at 120°C to remove any volatile 

components and evaporate the water. This process was repeated until all the solution was added. 

Immediately following the final drying, the powder was calcined at 600oC for 3 hr. Two control 

samples that contained no nickel and magnesium but only Pt or Pd were synthesized the same way 

as mentioned above.  

3.2.2 Catalyst Characterization 

The catalysts were characterized using temperature-programmed reduction (TPR), X-ray 

diffraction (XRD), N2 physisorption (BET) and CO2 desorption (TPD-CO2). A Cirrus MKS mass 

spectrometer (MS) connected in-line with a u-tube reactor containing 50-75.5 mg of catalyst was 
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used for the TPR and TPD-CO2 studies. Two layers of quartz wool surrounded the catalyst on both 

sides to keep it in place inside the reactor. The reactor was then positioned inside a 

Thermoscientific Thermolyne tube furnace and high temperature glass wool was added to insulate 

the top of the furnace. Alicat Scientific mass flow controllers were used to control the feed gases. 

In addition, all of the gas feeds and outlets were wrapped in heating tape to prevent condensation 

prior to entering the MS. The furnace temperature was controlled using a Eurotherm 3110 PID 

controller. For TPR studies, catalysts were pretreated under 50 sccm of helium (UHP, Airgas) for 

30 min at 110°C. Catalysts were then cooled to 50°C where the gas flow was switched to 5% 

H2/He (50 sccm). The sample was then heated at a ramp rate of 10°/min to 900°C and held for 30 

min. Ionization factors were calculated using calibration curves prior to data analysis. 

A Bruker AXS diffractometer using a Cu Kα source at 40 kV and 40 mA was used for the 

XRD. The data were obtained using a (2θ) angular range of 20-80°. The step size was 0.02° and 

the dwell time was 3 sec for each step.  

A Quantachrome Autosorb-IQ was used for obtaining BET surface areas as well as BJH 

pore volumes and pore diameters. Each experiment was done using 50-55 mg of catalyst. Each 

sample was initially pretreated at 120°C for 2 hr prior to loading to remove any moisture. The 

sample was then loaded in a small-bulb 6 mm quartz cell. Helium was used to backfill the sample 

where it was then outgassed under vacuum for approximately 1 hr. The surface area values were 

obtained by fitting the data to a BET isotherm in the P/P0 range of 0.05-0.33 using N2. The pore 

volume is reported at P/P0 of ~1.  

CO2 temperature-programmed desorption (CO2-TPD) studies were done to determine the 

catalyst basicity using the same system already described previously in the TPR section. The 

catalyst (75.5 mg) was initially reduced at a temperature of 300°C and held at that reduction 



www.manaraa.com

42 
 

temperature for 1 hr in a 5% H2 in He gas mixture. After reduction, only He (50 sccm) was flown 

to cool the catalyst until a temperature of 50°C was reached. Once the temperature stabilized at 

50°C, a 10% CO2 in He was introduced to the catalyst and flown for 30 min at a constant GHSV 

of 68,000h-1. The catalyst was then purged by once again flowing He only (50 sccm) for another 

30 min. The temperature was then increased to 800°C at a ramp rate of 10°C/min and held for 10 

min.  

3.2.3 Catalytic Testing 

For the dry reforming reaction experiments, after the reduction step, the catalyst was cooled 

to 200°C in He flowing at 50 sccm. Dry reforming reaction experiments were conducted at a 

constant space velocity of 68,000 h-1 and atmospheric pressure. The reactants, methane and carbon 

dioxide (both 99.999% pure from Airgas) were then introduced in a 1:1 ratio (7% concentration of 

each reactant in He, 44 sccm total flowrate) to the catalyst. After the reactant flow was stable, the 

temperature was increased to 900°C using a 10°C/min ramp rate and held for 30 min. Steady-state 

reaction experiments were also conducted on select Pt and Pd catalysts. The catalyst is reduced in 

a similar manner as described above. After cooling to 200°C, the temperature is ramped to 470°C 

using a 10°C/min ramp rate and held for 30 min or until the MS signals were very steady. The 

temperature is then reduced to 440°C, left to stabilize then held for 30 min. The process is repeated 

until a temperature of 430°C is reached. Temperature-programmed oxidation studies were done 

on selected post-reaction catalysts and following steady-state experiments. The catalyst was cooled 

to 60°C under inert He (50 sccm) and held until the temperature stabilized. Oxygen in helium was 

then introduced in a 0.1:0.9 ratio respectively with a total flow rate of 50 sccm at a constant GHSV. 

The temperature was then increased to 900°C using the same ramp rate of 10°C/min and held for 

one hour. The oxidation studies showed no presence of surface coke on any of the tested catalysts. 
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The amount of CO2 adsorbed in the temperature-programmed desorption studies was used was an 

estimate of active sites to determine the turnover frequencies (TOFs) from the steady state 

conversions of CO2. Through a previous study of testing different GHSV, it was determined that 

external mass transfer limitations were insignificant for this catalyst system and that there were no 

internal diffusion limitations as confirmed by the Weisz-Prater criterion [20].  

3.3 Results and Discussion 

Four different catalysts 0.13%Pd-1.39wt%Ni1.0wt%Mg (0.13Pd), 0.51%Pd-

1.37wt%Ni1.0wt%Mg/Ce0.6Zr0.4O2  (0.51Pd), 0.16%Pt-1.34wt%Ni1.0wt%Mg/Ce0.6Zr0.4O2  

(0.16Pt), 0.64%Pt-1.34wt%Ni1.0wt%Mg/Ce0.6Zr0.4O2  (0.64Pt), as well as two controls 

0.15%Pd/Ce0.6Zr0.4O2 (0.15Pd/CeZr) and 0.16%Pt/Ce0.6Zr0.4O2 (0.16Pt/CeZr) were synthesized 

and studied for low temperature dry reforming of methane. The simplified notation for each 

catalyst is included in Table 3.1 and will be used from now onward. The catalysts were 

characterized using TPR, XRD, N2-Physiorption, TPD-CO2. Temperature-programmed dry 

reforming experiments were done and were directly followed by temperature-programmed 

oxidation studies. Steady-state reaction experiments were done on the two most promising 

catalysts (0.13Pd and 0.16Pt). Post-reaction steady-state characterizations (TPO, XRD, N2-

physisorption) were also done on those catalysts. 

3.3.1 Characterization 

Temperature-programmed reduction experiments were done on all catalysts to determine 

the reducibility of the catalyst. The results are presented in Figure 3.1, with the peak reduction 

temperature also in Table 3.1. Pd catalysts had lower reduction temperatures overall compared to 

Pt catalysts.  It has been well documented in the literature that the presence of metals influence 

CeO2 by increasing its reducibility [47, 68, 76, 81]. Both the 0.13Pd and 0.51Pd catalysts had the 
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lowest initial reduction temperatures of 135°C and 170 °C. However, the 0.13Pd sample displayed 

a very prominent reduction peak compared to the other samples. In addition, the 0.15Pd/CeZr 

control catalyst had a reduction temperature of 145°C unlike the 0.16Pt/CeZr control which did 

not have a single peak but rather a broad distributed one from 196-480°C.  

 

 
Figure 3.1: Temperature-programmed reduction (TPR) profiles as represented by water 
formation (m/z 18). (a) TPR of Pd catalysts, (b) TPR of Pt catalysts.  Legend arrows 
indicative of increasing reduction temperature.  

(a) 

(b) 
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Table 3.1: Surface area, pore properties, CO2 desorption data and reduction temperature. 

Sample Notation SBET (m2/g) 
Pore 
Volume 
(cc/g) 

Pore Diameter 
(nm) 

Amount CO2-
desorbed 
(µmole/g.cat) 
(Temp 70-
550°C) 

Peak Reduction 
Temperature 
(°C) 

0.13%Pd- Ce0.6 Zr0.4 O2 -
1.39Ni1.0Mg 0.13Pd 28 30.8b 0.06 0.06b 9.55 9.57b 1.23 169 

0.15%Pd- Ce0.6 Zr0.4 O2 
0.15Pd/ 
CeZr 43 0.08 4.33 0.93 147 

0.51%Pd- Ce0.6 Zr0.4 O2 -
1.37Ni1.0Mg 0.51Pd 52 0.11 9.56 2.91 137 

0.16%Pt- Ce0.6 Zr0.4 O2 -
1.34Ni1.0Mga 0.16Pt 31 * 21.5b 0.07 * 0.06b 11.6 * 11.3b 1.53 248 * 

0.16%Pt- Ce0.6 Zr0.4 O2
a 0.16Pt/ 

CeZr 70 0.16 11.4 0.71 196-480 

0.64%Pt- Ce0.6 Zr0.4 O2 -
1.34Ni1.0Mga 0.64Pt 22 0.05 11.4 1.01 242 

*Indicates the average of two experiments reported 
a Data obtained from a previous study [20] 
b Post-reaction characterization
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All reduction profiles had an initial intense reduction peak and a second less prominent 

reduction peak at a higher temperature although this was more evident in the Pt-doped catalysts 

versus the Pd-doped catalysts. The initial reduction peak can be attributed to the surface cerium 

oxide and weakly bound metals whereas the higher temperature reduction is attributed to removal 

of oxygen in the bulk ceria strongly bound to NiO [27, 68, 74, 94]. Noble metals helped reduce 

ceria to Ce3+ and create oxygen vacancies [65]. Hydrogen likely activated on the metal and 

migrated to the support. In the presence of Pt or Pd, reduction likely occurred as a result of 

hydrogen spillover since noble metals are known to dissociatively adsorb hydrogen [56, 77, 94, 

95].  

N2-physisorption was done to examine the effects of metal addition on the surface and bulk 

properties of the support. BJH pore size distribution curves are provided in Figure 3.2 and the 

results are reported in Table 3.1. For the Pt catalysts, the surface area and pore volume decreased 

with increasing Pt amounts. These findings are consistent with previously published works [1, 71, 

72] and is likely the result of Pt blocking some of the pores and becoming less dispersed with 

increasing amounts. The Pd catalysts exhibited a similar decrease in surface area and pore volume 

with metal loading.  

X-ray diffraction patterns for the Pd and Pt catalysts are shown as Figure 3.3(a) and Figure 

3.3(b), respectively. All the major diffraction lines were consistent with a cubic fluorite structure 

characteristic of CeO2. This result indicated that the ZrO2 in the support is incorporated into the 

CeO2 crystal lattice consistent with previously published literature [1, 39, 56]. Furthermore, the 

asymmetric nature of the diffraction lines suggests the existence of multiple phases for the ceria 

zirconia solid solution [73]. There were no visible diffraction lines associated with Pd or Pt as 

expected due to the low content and expected high dispersion of the metals. These results are 
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consistent with the literature [56, 72]. On the other hand, MgO and NiO diffraction lines are seen 

at a 2θ between 42-44° on all samples but are more prominent especially in the 0.64Pt catalyst, 

indicating NiO and MgO deposition onto the support. 

 
. 

 
Figure 3.2: BJH pore size distribution curves. (a) Pd and (b) Pt catalysts.

(a) 

(b) 
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Figure 3.3: X-ray diffraction patterns of Pd (A) and Pt (B) catalysts. (200) and (111) NiO and 
MgO diffraction lines are highlighted in the 0.64Pt sample with the dotted box and 
represented by (*) and (°).  
 

Catalyst basicity was determined using temperature-programmed desorption studies of 

carbon dioxide. The results are shown in Figure 3.4 and are summarized in Table 3.1. The amount 

of carbon dioxide desorbed varied between 0.93 to 2.91 µmole/g for the Pd catalysts where the 

0.51Pd catalyst had the highest amount of CO2 desorbed of 2.91 µmole/g.  

 
Figure 3.4: TPD-CO2 (m/z = 44) of reduced Pd (A) and Pt (B) catalysts. Arrows correspond 
to legend order. 
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The Pt catalyst had a lower amount of carbon dioxide desorbed overall between 0.71 for 

the control sample without any nickel and magnesium to a high of 1.53 for the 0.16Pt catalyst. A 

more basic catalyst as indicated by the higher amount of CO2 adsorbed is preferable since it can 

reduce carbon deposition by shifting equilibrium concentrations from CO disproportionation [7]. 

3.3.2 TP-Dry Reforming 

CO and H2 production as a function of temperature from the dry reforming reaction studies 

are presented for all catalysts in Figure 3.5. Conversion temperatures (of 10% and 50%) of both 

reactants as well as syngas ratios were calculated for all catalysts and are summarized in Table 3.2. 

Overall, Pd catalysts had lower 10% conversion temperatures for both methane and carbon dioxide 

versus Pt catalysts. The 0.13Pd catalyst had the lowest 10% methane conversion temperature of 

383°C followed by the 0.16Pt at 454°C. The 0.51Pd sample had a 10% methane conversion 

temperature of 457°C which was lower than the 0.64Pt temperature of 493°C. Both control 

samples (0.15Pd/CeZr and 0.16Pt/CeZr) had higher 10% methane conversion temperatures, 517°C 

for 0.15Pd/CeZr and 504°C for 0.16Pt/CeZr. The H2:CO ratio for all catalysts however was 

between 0.22-0.41 with Pd catalysts having slightly higher syngas ratios compared to Pt ones. The 

0.13Pd and 0.51Pd had the highest H2:CO ratio for all catalysts however was between 0.22-0.41 

with Pd catalysts having slightly higher syngas ratios compared to Pt ones. Both 0.13Pd and 0.51Pd 

had the highest H2:CO ratio of 0.39 and 0.41, respectively. The lower than stoichiometric syngas 

ratio is attributed to the RWGS reaction simultaneously occurring as a side reaction under the low 

temperatures employed for this study and is consistent with previous works done in this group and 

other groups [18, 20, 38, 55, 62]. In general, both Pd and Pt catalysts had comparable results which 

is consistent with findings from other studies that concluded that Ru and Rh were among the most 
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active catalysts for methane reforming followed by Ir and finally Pt and Pd with comparable 

activities [96]. 

 
Figure 3.5: Hydrogen and carbon monoxide formation over 0.13Pd (a/b) and 0.16Pt (c/d) 
with respect to temperature.  
 
3.3.3 Steady-State Dry Reforming (470-430°C) 

Steady-state studies were done on the two most active samples (0.13Pd and 0.16Pt) in the 

temperature range 430°C-470°C. The turnover frequencies (TOFs), rates, and activation energies 

were calculated based on CO2 conversion for the Pd catalysts and compared to those of the Pt 

catalysts done in a previous study by this group [20]. The results are summarized in Table 3.3. The 

rates and turnover frequencies for Pt catalysts were slightly higher than those for Pd catalysts. At 

the lowest tested temperature of 430°C, 0.13Pd had a TOF of 2.4s-1 whereas 0.16Pt had a TOF of 
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2.69s-1. Overall Pt displayed higher rates compared to Pd and had a similar increasing rate trend 

with increasing temperature. Apparent activation energies were also calculated for the reactants 

for each catalyst and are summarized in Table 3.3. The activation energies of CH4 were comparable 

for both 0.13Pd and 0.16Pt which had an Ea of 18.2 kcal/mol and 18.5kcal/mol respectively. 

However, 0.16Pt had a marginally lower CO2 activation energy of 14.8kcal/mol compared to 

16.9kcal/mol for 0.13Pd. Both catalysts had activation energies within the general range of 

previously published works. For Ni/CZ at temperatures between 550-840°C, it was found that the 

Ea was 16-18.9kcal/mol for CH4 [85], whereas for 0.2Pt-15Ni/CaO-Al2O3, the Ea for CO2 was 

16.9kcal/mol at temperatures between 580-620°C [87]. 

Table 3.2: Dry reforming 10% and 50% conversion temperatures and H2:CO ratio at 
T=450°C. 
 

Catalyst 
10% CH4 
Conversion 
T (°C) 

50% CH4 
Conversion 
T (°C) 

10% CO2 
Conversion 
T (°C) 

50% CO2 
Conversion 
T (°C) 

H2:CO 
@T=450
°C 

Reference 

0.13Pd 383 542 366 521 0.39 
This 

Study 

0.51Pd 458 597 441 577 0.41 
This 

Study 

0.15Pd/ 
CeZr 

517 708 499 664 0.24 
This 

Study 

0.16Pt 454 603 432 578 0.30 [20] 

0.64Pt 493 613 479 595 0.22 [20] 

0.16Pt/ 
CeZr 

504 641 488 625 0.23 [20] 
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Table 3.3: Turnover frequencies, rates, and apparent activation energies of select catalysts 
(at given temperatures and P=1atm). TOFs and rates based on CO2 conversion.  
 

Temperature 
(°C) 

TOF (s-1) Rate (mol/hr/g.cat)*102 

Apparent activation 
Energy (kcal/mol) 

0.13Pda 0.16Ptb 

0.13Pda 0.16Ptb 0.13Pda 0.16Ptb CH4 CO2 CH4 CO2 

430 2.40 2.69 1.06 1.26 

18.2 16.9 18.5 14.8 

440 2.84 3.17 1.26 1.48 

450 3.37 3.50 1.49 1.73 

460 3.93 4.22 1.74 1.98 

470 4.58 4.74 2.03 2.22 

a This study 
b Reference [20] 
 
3.3.4 Post-Reaction Characterization 

Post steady-state experiment characterization was done using TPO, XRD, and N2 

physisorption on 0.13Pd and 0.16Pt catalysts. In a separate set of steady-state experiments, post-

reaction temperature-programmed oxidation (TPO) studies were also done immediately after 

cooling following the steady-state experiment and showed no surface coke present. XRD patterns 

of both spent catalysts did not display any shifts. Surface areas of the 0.13Pd sample was 28 m2/g 

pre-reaction and 30.8 m2/g post-reaction, which is within experimental error given the small 

amount of sample tested (<75mg) resulting from sample loss due to transfer from the U-tube 

reactor to the N2-physisorption cell. Both pore volume and pore diameter were the same pre- and 

post-reaction at 0.06 cc/g and 9.57 nm, respectively. For the 0.16Pt sample, the surface area 

decreased slightly and went from an average of 31 m2/g pre-reaction to 22 m2/g post-reaction as 
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summarized in Table 3.1. On the other hand, the 0.16Pt pore volume decreased from 0.07 cc/g to 

0.062 cc/g and the pore diameter decreased from 11.6 nm to 11.3 nm as well.  

3.4 Conclusion 

This study compared low temperature dry reforming of methane using Pt and Pd doped 

Ni/Mg catalysts on a ceria zirconia oxide support. TPR studies showed Pd doped catalysts having 

lower reduction temperatures than Pt doped catalysts. Carbon dioxide desorption studies 

confirmed that Pd catalysts had more basic sites as more carbon dioxide was adsorbed. On the 

other hand, reaction studies showed that both catalysts were comparable in terms of 10% methane 

conversion with Pd having slightly lower conversion temperatures. Reaction experiments showed 

that 0.13Pd had a 10% methane conversion of 383°C with conversion decreasing with decreasing 

temperature. Pt catalysts had a similar decrease in conversion with reduced temperatures and a 

10% methane conversion at 454°C. Post-reaction oxidation studies showed no surface coke present 

on any of the tested catalysts. The surface areas, pore volumes as well as pore diameters showed 

negligible changes following the reaction. Post-reaction XRD did not show shifts. Although both 

Pd and Pt catalysts had comparable reaction results, Pt catalysts had marginally higher TOF’s 

(2.69-4.74 s-1) compared to Pd catalysts (2.40-4.58 s-1). On the other hand, Pd catalysts had lower 

reduction as well as reaction temperatures, were more basic further reducing the possibility of coke 

formation and had slightly higher H2:CO ratios. For those reasons, the negligible change in the 

pore properties in the spent catalysts, and because of the more economical cost of Pd compared to 

Pt, it would be more feasible to use Pd catalysts for industrial applications.
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CHAPTER 4: EFFECT OF SILICON POISONING ON CATALYTIC DRY  
 

REFORMING OF SIMULATED BIOGAS3 
 

4.1 Introduction 

Many potential sources of biogas are possible including landfills that produce undesired 

landfill gas (LFG) from anaerobic digestion of municipal solid waste (MSW). LFG, which 

accounts for 20 % (in 2014) of all U.S. methane emissions [97] and is subject to more stringent 

regulations, can be used as a renewable feedstock. A promising route is utilizing the biogas to 

produce H2 and CO known as syngas through methane reforming. The syngas can then be used as 

a feedstock for Fischer- Tropsch synthesis to produce liquid hydrocarbons or the hydrogen can be 

used on its own as an alternative fuel. This route is especially encouraging given that biogas was 

recently added as an advanced biofuel under the EPA’s Renewable Fuel Standard released in 2014.  

Reforming of methane is typically facilitated at temperatures greater than 600°C through the use 

of nickel catalysts due to their high activity and low costs. Using precious metal doped catalysts 

can decrease the reforming temperature significantly as previously demonstrated by this group [20, 

98]. Unfortunately, biogas also contains various impurities that can adversely affect the reforming 

catalyst and the processing equipment. Volatile methyl siloxanes (VMS; generally addressed as 

siloxanes) are among the leading impurities present in LFG that cause equipment damage. 

Siloxanes are compounds comprised of silicon, oxygen as well as methyl groups and can be linear 

                                                 
3 This chapter is currently in review as part of a manuscript to a scientific journal.  
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or cyclic molecules (see Table 4.1). Siloxanes are harmful because they irreversibly decompose to 

silica [99-103], which then deposits and coats the equipment [34, 104] leading to equipment failure 

and shortened lifetime. As concerns grow over the harmful effect of siloxane decomposition to the 

landfill processing equipment, manufacturers have begun setting allowable limits of siloxanes in 

the feed for the equipment to continue functional operation. Engine manufacturers have set the 

allowable limit of siloxane concentration in the feed gas to 2.8 mg/m3 according to McBean [33]. 

Concentrations of siloxanes in LFG vary significantly depending on the location, age, source as 

well as contents of the landfill and have been estimated in the literature to be anywhere from 0.005-

15 mg/m3 [102, 105, 106]. These values are also important to solid oxide fuel cells (SOFCs) since 

they typically employ Ni anodes which only 10 ppbv siloxanes (~0.15 mg/m3) caused a decrease 

in performance [107, 108] and a general tolerance of a few ppm is stated [109]. 

The need to determine the effect of these siloxanes is becoming pressing and can be seen 

through the steady increase in related research in the last decade or so not only on equipment 

effects but on all stages of LFG processing. Many studies have looked at siloxanes removal 

technologies and/or other impurities for the purpose of gas cleanup and preserving the equipment 

used such as engines and turbines to recover the LFG [34, 105, 110-113]. However very little 

literature looks at the siloxane poisoning influence on reforming catalysts. The objective of this 

initial study is to compare the effects of silicon poisoning for high temperature reforming catalyst 

(1.3 wt% Ni-1.0 wt % Mg/Ce0.6Zr0.4O2) and the low temperature catalyst (0.16 wt % Pt-1.3 wt% 

Ni-1.0 wt% Mg/Ce0.6Zr0.4O2) to literature studies on biogas conversion processes. The low and 

high temperature catalyst systems have already respectively been proven to be effective at dry 

reforming of methane at low temperatures (≤450 °C) [20, 98] and dry [20, 98] and tri-reforming 

[114] of methane at typical temperatures (~800 °C). For simplicity, dry reforming was selected in 
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this study as the model reforming reaction. The effects of silica deposits between these catalysts 

and engine and fuel cell applications may be altered due to composition and operation/condition 

differences. Different silicon poisoning amounts equivalent to 1 week of exposure, 1 month, and 

6 months (assuming a 24/7 plant operation; see Appendix B for calculation details; Table B1) were 

selected for the accelerated catalyst poisoning. These amounts were chosen to study the effects of 

various exposure amounts and determine if and when the catalysts begins deactivation. The 

catalysts were directly poisoned via deposition wetness of a silicon containing solution assuming 

a worst case scenario where all the VMS in the raw gas decompose to silica and deposit onto the 

catalyst. Previous groups have studied the effects of poisoning in a similar ex situ accelerated 

approach for rhodium-based reforming catalysts [115, 116]. This approach was chosen over 

flowing siloxanes in the feed for safety purposes so as to not clog the capillary tubes of the online 

analytical system and to permit the accelerated deactivation approach. In addition to possible 

equipment damage that could occur, the vapor pressures of siloxanes are rather high compared to 

the typical contaminant levels in LFG and, even with further dilution, it is not possible to achieve 

even the high end of siloxane concentration levels in LFG. Thus, any direct introduction of 

siloxanes would also result in accelerated deactivation studies. Other groups have shown that VMS 

such as hexamethylcyclotrisiloxane (D3) decompose to SiO2 at temperatures as low as 200 °C on 

silica [117] and 250 °C on alumina [102], which are much lower than even the low temperature 

reforming temperature. Siloxane decomposition to silica occurs even under reducing conditions as 

noted by silica formation in anodic chambers of SOFCs [103] and wet biogas [102, 117]. 
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Table 4.1: Properties of selected volatile methyl siloxanesa. 

a: adapted from [34]

Compound: [Common 
Name] Molecular Structure Formula Molar Mass 

(g/mol) 
Density (g/L) at 20°C 

(liquid) 

Hexamethyldisiloxane: [L2] 
 

C6H18OSi2 162 753 

Octamethyltrisiloxane: [L3] 
 

C8H24O2Si3 236 817 

Decamthyltetrasiloxane: [L4] 
 

C10H30O3Si4 310 853 

Octamethylcyclotetrasiloxane: 
[D4] 

 

C4H24O4Si4 297 953 
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4.2 Experimental Procedure 

4.2.1 Synthesis and Materials 

The ceria-zirconia support was synthesized in a 0.6:0.4 ratio respectively using the co-

precipitation method described elsewhere [67]. Each batch of support was synthesized by weighing 

8.7 grams of the cerium precursor Ce(NO3)3 x 6H2O-(99.5 % pure; Alfa Aesar) and 3.3 grams of 

zirconium precursor ZrO(NO3)2 x H2O-(99.9 % pure; Alfa Aesar). Both precursors were dissolved 

together in 150 mL of deionized water in a large beaker. Then, ammonium hydroxide (75 mL; 28 

% w/w NH3; Sigma Aldrich) was added to the beaker slowly to precipitate the precursors until a 

clear liquid layer was visible on top of the beaker indicating complete precipitation. The mixture 

was then stirred and vacuum filtered until it was visibly dry. The filtrate was then re-dissolved in 

0.25 M NH4OH solution and vacuum filtered a second time. The filtrate was dried in an oven at 

60 °C for 1 h, then 120 °C for 12 h. Finally, the powder was calcined at 800 °C for 4 h. 

Incipient wetness impregnation was used to load the metals, nickel (1.3 % by mass), 

magnesium (1.0 % by mass), and platinum (0.16 % by mass) onto the support. The nickel precursor 

Ni(NO3)2 x 6H2O (99.9985 % pure; Alfa Aesar), the magnesium precursor Mg(NO3)2 x H2O 

(99.999 % pure; Alfa Aesar), and the platinum precursor H2PtCl6 x 6 H2O (≥37.5 % metal basis, 

Sigma-Aldrich). The desired amount of precursors were then dissolved in deionized water (2 mL). 

The solution was then added dropwise onto the support until incipient wetness. The resulting wet 

powder dried in an oven for 2 h at 120 °C to remove volatile components and evaporate the water. 

This process was repeated until all the solution was added. Immediately following the final drying, 

the powder was calcined at 600 °C for 3 h. Wetness impregnation was also used to introduce the 

silicon. The desired mass of catalyst is weighed in a ceramic boat. The necessary amount of 

Ludox® which is a colloidal silica suspension (40 wt% suspension in water, Sigma-Aldrich) is 
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weighed in a vial and DI water is added to thin the Ludox® (about 1.5 mL for every gram of 

Ludox®). The Ludox® solution is then added dropwise unto the catalyst until incipient wetness. 

The catalyst is then placed in a heated oven at 350 °C for 15 min. The process is repeated until all 

the Ludox® solution is used up. Upon final drying, the catalyst is then calcined at 600 °C for 4 h. 

A second batch of the NiMg only catalyst was done using the same method described, but was 

calcined at 800 °C to determine if a change in surface area and/or bulk properties would occur for 

the high temperature catalyst based on calcination temperature.  

4.2.2 Catalyst Characterization 

The catalysts were characterized using temperature-programmed reduction (TPR), X-ray 

diffraction (XRD), N2 physisorption (BET), scanning electron microscopy coupled with energy 

dispersive spectroscopy (SEM/EDS), and Fourier transform infrared spectroscopy (FTIR). A 

Cirrus MKS mass spectrometer (MS) connected in-line with a u-tube reactor containing 75.5 – 

75.9 mg of catalyst was used for the TPR studies. Prior to running the studies, MS calibration 

curves were used to obtain ionization factors. The catalyst was placed between two layers of quartz 

wool to keep it in place inside the reactor. The reactor was then placed inside a Thermoscientific 

Thermolyne tube furnace and insulated with high temperature glass wool at the top. Alicat 

Scientific mass flow controllers controlled the feed gas flowrates. Condensation was prevented by 

wrapping all of the gas feeds and outlets in heating tape prior to entering the MS. The furnace 

temperature was controlled using a Eurotherm 3110 PID controller. For the TPR studies, catalysts 

were pretreated under 50 Scm3 min-1 of He (UHP, Airgas) for 30 min at 110 °C. Catalysts were 

then cooled to 50 °C where the gas flow was switched to 5% H2/He (50 Scm3 min-1). The sample 

was then heated at a ramp rate of 10 °C/min to 900 °C and held for 30 min.  
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X-ray diffraction patterns were obtained using a Bruker AXS diffractometer using a Cu Kα 

source at 40 kV and 40 mA. The data were obtained using a (2θ) angular range of 20-80 °. The 

step size was 0.02 ° and the dwell time was 3 sec for each step.  

Brunaur Emmett and Teller (BET) surface area as well as BJH pore volumes and pore 

diameters were obtained using a Quantachrome Autosorb-IQ. Approximately 55-56 mg of catalyst 

was used for each experiment. Each sample was pretreated by placing it in an oven at 120 °C for 

2 h prior to loading to remove any moisture. The catalyst was then loaded in a small-bulb 6 mm 

quartz cell. The sample was backfilled using He where it was then outgassed under vacuum for 

approximately 6 h. The surface area values were obtained by fitting the data to a BET isotherm in 

the P/P0 range of 0.05-0.33 using N2. The pore volume is reported at P/P0 of ~1.  

A Hitachi S-800 scanning electron microscope equipped with energy dispersive 

spectroscopy (SEM/EDS) was used to obtain the catalyst images. All images were taken at 16.0 

kV and 3000x magnification. 

A Fischer Thermoscientific Nicolet iS50 FT-IR/DRIFTS with multibounce ATR was used 

to obtain infrared spectra of the catalysts.  

4.2.3 Catalytic Testing 

The catalyst (similar amount as stated for TPR) was reduced in a 5 % H2/He mixture at 

300°C for 1 h prior to running the dry reforming reaction experiments. After reduction, the catalyst 

cooled to 200 °C under a constant flow of 50 Scm3 min-1 of inert He. After temperature 

stabilization, carbon dioxide and methane were introduced (both 99.999 % pure from Airgas) were 

then introduced in a 1:1 ratio to the catalyst in inert He (20% reactants in 50 Scm3 min-1 total flow 

rate). The gas hourly space velocity was maintained constant at 68,000 h-1. The temperature was 

then ramped at 10 °C/min to 900 °C and held for 30 min.   
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4.3 Results and Discussion 

Two different reforming catalysts, a high temperature one with 1.3 %Ni and 1.0% Mg and 

a low temperature one with 0.16 % Pt added to the Ni and Mg were synthesized on ceria zirconia 

mixed oxide support (Ce0.6Zr0.4O2). Ludox®, a silica colloidal suspension, was selected for silicon 

introduction, as the methodology to simulate, accelerated way, the long-term effects of siloxane 

decomposition to silica. This approach is employed because siloxanes irreversibly decompose to 

silica [99-103]. Previous studies have shown that VMS (even cyclic molecules) can decompose at 

temperatures as low as 200 °C [102, 117] with some molecules such as trimethylsilanol having a 

boiling point as low as 90 °C [106]. Therefore, although the siloxanes are the starting compounds, 

the damage actually results from the silica [34, 104]. For this initial study, reactions were tested at 

temperatures up to 900 °C and a worst case scenario was assumed where all of the VMS 

decompose to silica on the catalyst. 

Three different poisoning amounts were chosen, 1 week, 1 month, and 6 months to study 

the effects of accelerated deactivation. The amounts were chosen based on several assumptions 

(see appendix B) including a plant that operates on a 24/7 basis with a flowrate of 4250 Sm3 h-1. 

The density of the catalyst was taken to be 1700 kg/m3. A survey of available literature showed a 

varying range of approximations from 0.005-15 mg/m3 for the amount of siloxanes present in LFG 

since it depends on size and content of waste in the landfill [102, 105, 118]. With that in mind, the 

concentration of siloxanes in the feed was assumed to be 5 mg/m3 ultimately equivalent to ~2 mg 

Si/m3 which is in the mid-range of the literature values. This Si amount would then result in an 

equivalent SiO2 amount of ~4 mg SiO2/m3. A gas hourly space velocity (GHSV) remained the 

same (68,000 h-1) as used for the lab experiments. Sample calculations for silica % weight gain 
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based on the assumptions is provided in appendix B (Table B1). The results along with the 

nomenclature that will be used for the poisoned catalysts is provided in Table 4.2. 

Table 4.2: Mass gain of silica.  

Catalyst Composition 
(Fresh) Sample Nomenclature Mass Gain 

SiO2 

1.3wt%Ni-
1.0wt%Mg/Ce0.6Zr0.4O2 

1 week NiMg 1W-NiMg  1.5% 

1 month NiMg 1M-NiMg 12% 

6 month NiMg 6M-NiMg 66% 

0.16wt%Pt-1.3wt%Ni-
1.0wt%Mg/Ce0.6Zr0.4O2 

1 week Pt 1W-Pt 1.1% 

1 month Pt 1M-Pt 11% 

6 month Pt 6M-Pt 62% 

 
4.3.1 Characterization 

4.3.1.1 Temperature-Programmed Reduction (TPR) 

The reducibility of the catalyst, as shown in Figure 4.1, was determined through 

temperature-programmed reduction experiments (TPR). Catalyst reduction is measured by 

tracking the formation of water shown by mass to charge ratio (m/z=18) from the output of the 

mass spectrometer. Reduction temperature has been identified to be directly related to activity with 

lower temperatures indicating higher activity as previously reported  in these catalyst systems [20]. 

All catalysts had a similar reduction profile with an initial peak indicating the formation of water 

then a tail (Figure 4.1). Overall, the Pt catalysts (fresh and poisoned) had lower reduction 

temperatures compared with the NiMg only catalysts. The fresh Pt catalyst displayed a reduction 

temperature of 248 °C [20]. Addition of silica caused an increase in reduction temperature where 
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1W-Pt had a reduction temperature of 304 °C. The 1M-Pt had a reduction temperature of 311 °C. 

The trend continued where 6M-Pt reached a high reduction temperature of 315 °C. The same trend 

was present in the NiMg only catalyst. Increasing the poisoning caused an increase in the reduction 

temperature from 382 °C for the fresh catalyst to a high of 546 °C for the 6M-NiMg catalyst.   

 
Figure 4.1: Temperature-programmed reduction (TPR) profiles as represented by water 
formation (m/z 18). (a) TPR of Pt catalysts (b) TPR of NiMg only catalysts.  Legend arrows 
indicative of increasing reduction temperature. 

 
4.3.1.2 N2 Physisorption Analyses 

Brunauer-Emmett-Teller (BET) surface areas, pore volumes, and pore diameters are 

presented in Table 4.3. Due to the commercial silicon agent (Ludox®) having a higher specific 

surface area than the unpoisoned catalysts, the total specific surface area actually increased with 

increasing silica deposits. The effect silica deposits was more readily observed through decreases 

in the average pore diameter. There was little impact on the total pore volume with silica deposits. 

Most likely, the porous silica coated the supports’ mesopores causing a decrease in peak pore 

diameter. Results presented and interpreted are also in agreement and suggested that initially a 

monolayer forms, which is unselective to specific surfaces.  
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Table 4.3: Specific surface areas (SSA)a and bulk properties.  

 SSA (m2/g) PV (cc/g) PD (nm) 

Fresh Pt b 31 0.07 11.6 

1W-Pt 31.5 0.07 9.5 

1M-Pt 34.4 0.08 7.2 

6M-Pt 59.1 0.1 6.4 

NiMg only Calcined at 600°C 

Fresh NiMg 40.0 0.1 11.4 

1W-NiMg 27.0 0.06 11.4 

1M-NiMg 36.3 0.09 11.4 

6M-NiMg 73.8 0.1 5.2 

NiMg only Calcined at 800°C 

Fresh NiMg b 40.0 0.1 11.4 

1W-NiMg 35.0 0.1 11.3 

1M-NiMg 28.9 0.07 7.2 

6M-NiMg 22.9/33.5 0.06/0.08 8.2/8.2 

a Ludox® SSA: ~220m2/g 
b From a previous study [98] 

 
To verify these interpretations, the high temperature catalyst was calcined at a higher 

temperature (800 °C rather than 600 °C) more indicative of its operation temperature. The 

calcination temperature had a significant effect on the specific surface area and pore properties of 

the high temperature catalyst. The decreases in specific surface area, pore volume, and pore 

diameter with silica loading indicated pore shrinkage and surface blockage, which would be 
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anticipated to adversely impact the catalyst activity. Reaction results discussed in the next section 

indicated that the catalyst deactivated even at the smallest poisoning amount which rendered the 

need to explore the possibility that some of the silica may agglomerate and leave the system as 

small particles unnecessary.  

4.3.1.3 Scanning Electron Microscopy Coupled With Energy Dispersive Spectroscopy 

(SEM/EDS)  

Visual differences between the fresh and poisoned catalysts, as well as to confirm the 

elements present in the catalyst system, were examined by SEM-EDS as shown in Figure 4.2. For 

the fresh 0.16Pt catalyst, no silica was observed, as anticipated, on the surface of the catalyst 

(Figure 4.2(a)).  

 
Figure 4.2: SEM images of fresh vs. 6M catalysts. (a) SEM image of fresh 0.16Pt catalyst (b) 
SEM image of 6M-Pt catalyst (c) SEM image of fresh NiMg catalyst (d) SEM image of 6M-
NiMg catalyst. 
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Alternatively, the 6M-Pt catalyst indicated the presence of silica as evidenced by the bright 

white regions (Figure 4.2(b)) compared to the fresh catalyst. A similar observation was seen in the 

fresh NiMg (Figure 4.2(c)) compared to the 6M-NiMg sample (Figure 4.2(d)) where the evidence 

of silica was prominent. EDS studies showed the presence of Pt, Ce, Zr, Ni and Mg in the fresh 

catalyst with percentages within experimental error. As summarized in Table 4.4, silicon was 

present both for NiMg and 0.16Pt poisoned catalysts. This finding indicated the physical presence 

of silicon and further proves that it has a direct effect in the decreased catalyst activity as will be 

discussed in the reaction section. Silicon was present in much higher concentrations (40 wt%) in 

the tested 6M sample compared to 7.9 wt% in the 1M sample (not shown; ratio nearly ~6), with 

no presence in the fresh catalyst as expected. 

Table 4.4: EDS quantitative data (in Wt%, carbon-free basis) for fresh 0.16Pt and NiMg 
catalysts compared to the 6M- Pt and 6M-NiMg catalysts. 
 

Element / 
Sample Fresh Pt  6M-Pt  Fresh NiMg 6M-NiMg  

O 16 34 12 24 

Mg 0.6 nd 0.4 0.40 

Si nd 40 nd 32 

Pt nd 5.2 nd nd 

Ce 62 nd 67 34 

Ni 5.7 nd 3.3 9.2 

Zr 15 nd 18 nd 

nd= not detected 
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4.3.1.4 FT-IR Spectroscopy 

Potential structural changes caused by poisoning was monitored by Fourier Transform 

infrared spectroscopy (FT-IR; Figure 4.3). The addition of silica has changed the peaks in the 700-

1250 cm-1 range for both the 0.16Pt (Figure 4.3a) and the NiMg only (Figure 4.3 b) catalysts. Both 

crystalline and amorphous silica have peaks in the same range. This result indicated that the 

catalysts have been contaminated with silica. Peaks in the lower range of 950-1100 cm-1 are 

indicative of stretching vibration of Si-O-Si bonds [119]. These findings are similar to previous 

findings obtained by Rasmussen et al. [120] who concluded that the catalyst was likely poisoned 

through a bond formation of a partially oxidized siloxane atom to an active Pt site. Similar 

absorbance peaks were visible for the NiMg only catalyst, indicating the presence of silica for the 

poisoned catalyst that were absent in the unpoisoned catalyst.  

Figure 4.3: IR spectra of Pt and NiMg catalysts. (a) Pt catalysts both poisoned and fresh (b) 
NiMg catalysts both poisoned and fresh  
 
4.3.1.5 XRD 

X-ray diffraction (XRD) patterns (Figure 4.4) showed that silica has been deposited onto 

the catalyst even at the smallest amount used. This conclusion can be seen by the change in the 
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diffraction pattern at the lower 2theta (20-25°) values as indicated by the arrows showing the broad 

peak consistent with silica [121]. The first diffraction pattern at the very top showed a fresh, un-

poisoned catalyst and indicated that the Miller indices of the cubic ceria-zirconia solid solution are 

primary crystalline phase. The poisoning process had minimal impact on its crystalline features. 

Figure 4.4: X-ray diffraction patterns of 0.16Pt and NiMg catalysts. (a) 0.16Pt catalysts both 
fresh and with different poisoning amounts (b) NiMg catalysts both fresh and with different 
poisoning amounts. 
 
4.3.2 Dry Reforming 

Hydrogen and carbon monoxide production as a function of temperature are shown in 

Figure 4.5. The fresh catalysts (0.16Pt and NiMg) were able to reform methane to produce both 

H2 and CO at lower temperatures compared to the poisoned catalysts. Catalytic activity decreased 

with increased poison amount as evident by the increased temperature at which H2 and CO were 

produced. The results of temperatures where 10 % (X10) and 50 % (X50) of both CH4 and CO2 were 

converted to syngas are summarized in Table 4.5. Addition of even minute amounts of silica, as 

seen in the 1W-Pt catalyst, increased the temperatures from 454 °C to 518 °C for X10 CH4 
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conversion and from 402 °C to 503 °C for X10 CO2 conversion. Higher poisoning amounts have 

successively increased the conversion temperature to reach a maximum of 587 °C for X10 CH4 

conversion for the 6M-Pt catalyst and 566 °C for X10 CO2 conversion for the same catalyst. This 

trend fits with the literature.  

Table 4.5: Methane and carbon dioxide 10% (X10) and 50% (X50) conversion temperatures. 
 

Pt Catalysts 

CH4 Conversion 
Temperature °C 

CO2 Conversion 
Temperature °C H2:CO 

(@450°C) 
 X10 X50 X10 X50 

Fresh* 454 603 432 578 0.30 

1W-Pt 518 630 503 613 0.22 

1M-Pt 535 675 510 657 0.20 

6M-Pt 587 752 566 726 0.11 

NiMg 
Catalysts 
 

CH4 Conversion 
Temperature °C 

CO2 Conversion 
Temperature °C H2:CO 

(@800°C) 
 X10 X50 X10 X50 

Fresh* 762 848 742 813 0.31 

1W-NiMg 810 900 790 875 0.13 

1M-NiMg 842 nr 827 900 0.09 

6M-NiMg nr nr 900 nr  n/a 

*From a previous study [20] 
-nr: Not reached 
n/a: not applicable since there was no reactant conversion 

Rasmussen et al. studied the catalytic activity over Pt catalysts for CO conversion using 

raw flue gas and the X50 conversion temperature increased from 199 °C for the fresh catalyst to 

251 °C for the poisoned catalyst [120].The H2:CO ratio (at 450 °C) also suffered with the addition 

of poison. For the low temperature catalyst, 0.16Pt, the ratio decreased from 0.30 for the fresh 
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catalyst to 0.22 for 1W-Pt sample and continued to decrease ultimately reaching 0.11 for 6M-Pt 

catalyst. Ideally, higher H2:CO ratios  near 2:1 at a minimum are required for chemical processes 

such as methanol synthesis and Fischer Tropsch (FT). Similar observations were seen for the NiMg 

only catalyst where the temperature increased from 762 °C to 810 °C for the X10 of CH4 for the 

1W-NiMg catalyst and reached 842 °C for 1M-NiMg. Furthermore, addition of silica has caused 

the 50 % methane (X50) conversion and in the case of 6M-NiMg, the X10 conversion to be 

unreached thereby making the catalyst essentially unusable in this operational window. The H2:CO 

ratios also decreased with increased poisoning amounts as observed in the low temperature 

catalyst. At 800°C, the fresh catalyst had a H2:CO ratio of 0.31 which decreased to 0.13 for the 

1W-NiMg catalyst and reaching 0.09 for 1M-NiMg sample. There was no detectable H2 or CO 

produced at 6M-NiMg catalyst which correlates to the lack of reactant conversion. 

Based on previous results on these catalyst systems [20, 98] and others using Ni supported 

on rare earth oxides [122, 123] in which a bifunctional mechanism (active support) has been 

proposed, the change in temperatures was comparable for both CH4 and CO2 conversion. This 

comparison suggested that silica adsorption was unselective to different surfaces. Furthermore, the 

addition of small amounts of silica in the 1W-Pt and 1W-NiMg samples indicated that the effect 

is more substantial, on a silica amount basis, at low poisoning. This non-linearity in conversion 

temperature with increased poisoning would be consistent with an initial monolayer formation 

occurring before multilayer formation. This speculation is consistent with findings [117] from 

examination of metal oxides for siloxane adsorption. From the N2 physisorption and TPR results, 

the role of active site blocking seemed more prevalent than pore blockage. In other words, 

substantial activity loss occurred even though specific surface areas and total pore volumes 

increased with silica addition. 
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Figure 4.5: Hydrogen and carbon monoxide formation with respect to temperature. 
Formation over 0.16Pt catalyst (a/c). Formation over NiMg catalysts (b/d). 

 
As presented in Figure 4.6, the NiMg catalyst calcined at 800 °C had a higher reduction 

temperature compared to its 600 °C-calcined catalyst counterpart. This comparison indicated that 

the catalyst calcined at higher temperature would be less active. Therefore, reaction data was 

determined to be unnecessary for the higher temperature calcined catalyst since the loss of activity 

was already high. Since the sample calcined at higher temperature had lower specific surface area 

and total pore volume than its counterpart calcined at low temperature, the role of pore blocking 

would likely increase since the amount of silicon was constant and the silica would likely become 

more crystalline.  
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Figure 4.6: TPR profiles of 1M-NiMg catalysts at 600°C calcination and 800°C calcination. 

 
If the siloxane decomposition could be controlled to decompose into a stable, porous (i.e., 

crystalline) silica phase initially rather, it may be possible to prevent substantial coverages of the 

active catalyst surface. That is, direct poisoning of the catalyst would not occur. To achieve size 

selectivity in reforming catalysis, this has been achieved by our group during the synthesis of 

zeolite coatings [124, 125]. However, even if the siloxane decomposition to silica resulted in a 

porous outer layer that did not cover the active catalyst surface, pressure issues and/or transport 

limitations over extended time-on-stream.  

Finally, based on the strong poisoning effects of the 1W-Pt and 1W-NiMg samples, the 

results of this study suggested that at least ~ 96 % (1-1/26) of siloxanes would need to be removed 

prior to the reformer for a catalyst to achieve stable operation over 6 months. Based on the 

assumptions used in the base case for the calculations (see appendix B), the mass concentration of 

siloxanes would need to be lower than ~0.16 mg/m3. Deeper purification may also be needed as 
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catalyst poisoning by siloxane decomposition appears irreversible. Advances for efficient and 

economical siloxanes removal techniques are thus required for biogas resources to contribute to 

future synthetic fuel production.  

4.4 Summary and Conclusion 

Silica addition has been demonstrated to have adverse impacts on reforming catalysts, 

which is typical scenario from the decomposition of siloxanes present in biogas. Both catalyst 

systems indicated decreases in methane and carbon dioxide conversions with increasing deposited 

silica amounts, with the effect becoming less prominent at increasing silica amounts as shown in 

Figure 4.7.   

 
Figure 4.7: Effect of silica addition on CH4 and CO2 conversion. 

This is in agreement with previous results that showed reduction temperature was a key 

indicator of activity [20], peak reduction peaks increased in correlation with the with increasing 

deposited silica amounts. Regardless of which catalyst system is selected, the results of this study 

have shown that siloxanes are harmful to the reforming catalysts’ performances. The catalyst 

systems showed signs of deactivation even at low amounts of poisoning as shown. Therefore, it is 
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imperative that the biogas be scrubbed from siloxanes, as well as the sulfides, as their presence 

would result in catalysts having to be replaced more frequently.  
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CHAPTER 5: SYNGAS PRODUCTION AND REACTANT CONVERSION USING PT- 
 

NI-MG/CERIA-ZIRCONIA AND PD-NI-MG/CERIA-ZIRCONIA CATALYSTS AND  
 

EFFECT OF GHSV ON LOW TEMPERATURE BI-REFORMING OF MODEL  
 

BIOGAS4 
 

5.1 Introduction 

Growing energy demands coupled with the inevitable eventual depletion of the finite fossil 

fuels necessitate the need for alternative fuels. Biogas conversion to liquid hydrocarbon fuels is 

one promising alternative. Much of the biogas as well as natural gas produced through the 

petrochemical industry, enteric fermentation, municipal solid wastes and other processes is 

underutilized. Combusting the stranded natural gas can provide enough carbon dioxide and water 

to act as an oxidant for the endothermic reaction and is comparable to biogas. For instance, North 

Dakota in recent years, has increased oil production from Bakken formations by 40 fold to reach 

1,130,000 bpd causing a surge in associated natural gas formation according to the EIA. However, 

more than 30% of that stranded gas equivalent to 375 million cu. ft/day ultimately gets flared and 

never reaches the market [126].  

Biodegradable municipal waste dumped in landfills generate a type of biogas called landfill 

gas (LFG) that is composed mainly of methane and carbon dioxide. Biogas is produced by the 

anaerobic digestion of MSW or other biodegradable waste, which can be used as a future source 

                                                 
4 This chapter is currently in review as part of a manuscript to a scientific journal.  
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of methane and carbon dioxide. Both methane and carbon dioxide are significant greenhouse gases. 

According to the EPA [15], 18% of methane anthropogenic emissions come from landfills. The 

EPA estimates that the US generates more than 250 million tons of municipal solid waste (MSW) 

per year which mostly go to landfills [10]. Biogas, the biodegradable component of MSW accounts 

for about 215 billion cu.ft.  

Biogas, including landfill gas (LFG) has excellent potential to become a carbon-neutral 

energy source; presently, only 15% is utilized for energy. In addition, it can possibly reduce the 

potential emission of methane and carbon dioxide into the atmosphere. As a greenhouse gas, 

methane is 20 times more powerful at trapping heat than carbon dioxide which makes it 

considerably harmful to the atmosphere. Currently, LFG is flared, burned for electricity and the 

methane is condensed.  

Methane reforming produces syngas, a mixture of hydrogen and carbon monoxide that can 

be further used as a feedstock for important industrial processes like methanol synthesis and 

Fischer Tropsch synthesis (FTS) to make long chain hydrocarbons such as diesel fuel. Reforming 

of methane is done several different ways including tri-reforming which utilizes carbon dioxide, 

steam and oxygen [1, 50, 127] shown as reactions (5.1-5.3).  

𝐶𝐶𝐻𝐻4 + 𝐶𝐶𝐶𝐶2 = 2𝐶𝐶𝐶𝐶 + 2𝐻𝐻2      𝛥𝛥𝛥𝛥° = 247.3 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�      (5.1) 

𝐶𝐶𝐻𝐻4 + 𝐻𝐻2𝑂𝑂 = 𝐶𝐶𝐶𝐶 + 3𝐻𝐻2     𝛥𝛥𝛥𝛥° = 206.3 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�      (5.2) 

𝐶𝐶𝐻𝐻4 + 1
2� 𝑂𝑂2 = 𝐶𝐶𝐶𝐶 + 2𝐻𝐻2     𝛥𝛥𝛥𝛥° = −35.6 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚�      (5.3) 

Another method is dry reforming (DRM) shown in reaction (5.1) where only carbon 

dioxide and methane are in the feed, and finally there is also steam reforming of methane (SRM) 

described by reaction (5.2) where the feed consists of steam along with methane. Both DRM and 
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SRM have been extensively studied in recent years [3, 5, 18, 19, 21, 29, 41, 62, 63, 128]. Each of 

the mentioned reforming methods has advantages and disadvantages.  

Tri-reforming has been shown to produce syngas ratios between 1.5-2.3 with high methane 

conversion rates of more than 90% on nickel catalysts as reported in the literature [1, 50, 129]. 

However, tri-reforming can be very costly on an industrial level since it requires addition of oxygen 

in the feed. Dry reforming of methane requires no added oxygen in the feed; however, this 

endothermic reaction readily occurs only at high temperatures (T>600°C) and requires an external 

source of heating [21]. Thermodynamically the reforming of methane is not possible below 350°C 

[7, 93]. Unfortunately, DRM also suffers from very low syngas ratios (≤1) making it inefficient 

for processes requiring higher H2:CO ratios. Steam reforming of methane can produce syngas 

ratios of up to 3:1. However because steam needs to be added in the feed, the costs become very 

high and thus not feasible on an industrial scale especially for small to mid-sized plants. Previous 

studies in this group had focused on reducing the reforming temperature of methane for DRM 

using a nickel magnesium catalyst doped with platinum and/or palladium on a ceria zirconia oxide 

support [20, 98]. Although the reforming temperature for 10% conversion was brought down 

significantly (T=454°C), the syngas ratios were nowhere near stoichiometric with a maximum 

ratio of 0.41 for a 0.51wt% Pd-1.37wt%Ni 1.0wt%Mg/Ce0.6Zr0.4 catalyst [98]. The desire to 

improve the low syngas ratios previously obtained while maintaining low reforming temperatures 

served as the motivation behind this work. The combined dry and steam reforming processes 

(reactions 5.1 and 5.2) known as bi-reforming which is the focus of this study can reduce the cost 

making it more viable on a large scale as well as produce syngas at a ratio of 2:1 which is ideal for 

Fischer Tropsch Synthesis (FTS) and other industrial processes [7, 18, 50, 130]. Some catalysts 

that have been specifically investigated for bi-reforming included Ni doped onto La2Zr2O7 
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pyrochlore [131], NiO/MgO and CoO/MgO [37, 132]. Nickel is a commonly used reforming 

catalyst because it is inexpensive and readily available. However nickel suffers from rapid 

deactivation and coke formation leading to several studies that added various precious metal 

dopants to circumvent these drawbacks associated with nickel-only catalysts by stabilizing the 

nickel and enhancing its activity [31, 42, 56].  

The goal of this study is to compare the properties of two catalysts Pt or Pd doped Ni-Mg 

supported on ceria zirconia to obtain a syngas ratio close to 2:1 for low temperature (T≤500°C) bi-

reforming of methane. It is known that steam reforming of methane produces more H2 versus dry 

reforming of methane alone [29, 50, 128, 133]. Driving the reaction to lower temperatures opens 

avenues for intensification processes which can utilize solar energy through parabolic troughs [32, 

134, 135]. Furthermore, complete conversion of methane is not required for electricity generation 

and doesn’t require a particular syngas ratio [134].  

However, at the desired lower temperatures, a challenge arises since reaction kinetics 

dominate over thermodynamics for DRM where RWGS reaction is more prevalent causing less 

H2 production [128]. Determining the optimum amount of steam to improve the H2:CO ratio while 

still allowing the DRM reaction to occur and maintaining a low operating temperature can be very 

challenging. Ideally, using lower steam to carbon ratios (S/C<2.5) allows for easier 

implementation on an industrial scale. The lower ratio reduces equipment size by decreasing 

overall mass flow [21]. For this study different feed compositions were tested as well as different 

gas hourly space velocities (GHSV) to optimize and determine the effect on syngas ratio if any.  
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5.2 Experimental 

5.2.1 Materials and Synthesis 

The support consisting of ceria-zirconia in a molar ratio of 0.6:0.4 was synthesized using 

the co-precipitation method described elsewhere in literature [67]. Each batch of support was 

synthesized by weighing 8.7 grams of the cerium precursor Ce(NO3)3 x 6H2O-(99.5% pure; Alfa 

Aesar) and 3.3 grams of zirconium precursor ZrO(NO3)2 x H2O-(99.9% pure; Alfa Aesar). Both 

precursors were dissolved together in 150 mL of deionized water in a large beaker. Then, the 

precursor was precipitated using ammonium hydroxide (75 mL; 28% w/w NH3; Sigma Aldrich) 

that was added to the beaker slowly until a clear liquid layer was visible on top of the beaker 

indicating complete precipitation. The mixture was then thoroughly stirred to completely dissolve 

and vacuum filtered until it was visibly dry. The filtrate was then re-dissolved in 0.25M NH4OH 

solution and vacuum filtered a second time. The filtrate was dried in an oven at 60°C for 1 hr, then 

120°C for 12 hr. Finally, the powder was calcined at 800oC for 4 hr. 

Incipient wetness impregnation was used to load the metals, nickel (1.37-1.39% by mass), 

magnesium (1.00% by mass), platinum (0.16% by mass), and palladium (0.13% by mass) onto the 

support. The nickel precursor Ni(NO3)2 x 6H2O (99.9985% pure; Alfa Aesar), the magnesium 

precursor Mg(NO3)2 x H2O (99.999% pure; Alfa Aesar), the platinum precursor H2PtCl6 x 6H2O 

(≥37.5% metal basis, Sigma-Aldrich), and the palladium precursor (NH4)2PdCl6 (99.99%, Sigma 

Aldrich) were all used to prepare the catalyst. The desired amount of metal precursors were 

dissolved in 2 mL of deionized water. The solution was then added drop wise onto the support 

until incipient wetness. The resulting wet powder was then dried in an oven for 2 hr at 120°C to 

remove any volatile components and evaporate the water. This process was repeated until all the 
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solution was successfully added. Immediately following the final drying, the powder was calcined 

at 600oC for 3 hr.  

5.2.2 Catalyst Characterization 

The catalysts were extensively characterized using X-ray diffraction (XRD) to determine 

the crystal structure, temperature programmed reduction (TPR) to determine the reducibility of the 

catalyst, N2 physisorption (BET) to obtain surface areas as well as pore volumes, and temperature 

programmed desorption studies (TPD-CO2) for the catalysts’ basicity and results were previously 

published [20, 98]. Temperature programmed oxidation (TPO) studies were done on post reaction 

on the long term study to combust any present surface coke that may have formed during the 

reaction.  

For the XRD studies, a Bruker AXS diffractometer using a Cu Kα source at 40 kV and 40 

mA was used. A (2θ) angular range of 20-80° was used to obtain the data. A step size of 0.02° 

with a 3 sec dwell time for each step was used.  

A Cirrus MKS mass spectrometer (MS) was used for the TPR, TP-RXN, TPD-CO2 to 

determine catalyst basicity and post reaction TPO studies. The desired amount of catalyst (37.7-

150.6 mg) was loaded in u-tube microreactor and sandwiched between two layers of inert quartz 

wool on either side to hold it in place. The loaded reactor was then connected to MS in-line feed 

gases using ultratorr fittings. It was then placed in a Thermolyne tube furnace manufactured by 

Thermo scientific and more high temperature quartz wool was added to insulate the top of the 

furnace. The temperature of the furnace was controlled by a Eurotherm 3110 PID controller. Feed 

gases were controlled using Alicat Scientific mass flow controllers. For TPR studies, catalysts 

were pretreated under 50 sccm of helium (UHP, Airgas) for 30 min at 110°C. The Catalysts were 

then cooled to 50°C. Once the temperature stabilized, the gas flow was switched to 5% H2/He (50 
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sccm). The sample was then heated at a ramp rate of 10°/min to 900°C and held for 30 min. 

Ionization factors were calculated using calibration curves prior to data analysis. 

BET surface areas, BJH pore volumes and pore diameters were all obtained using a 

Quantachrome Autosorb-IQ. Each experiment was done using 50-55 mg of catalyst. Prior to 

analyzing, each sample was initially pretreated at 120°C for 2 hr to remove any moisture. The 

sample was then loaded in a small-bulb 6 mm quartz cell. Helium was used as the backfill gas for 

the sample which was then outgassed under vacuum for approximately 1 hr. The surface area 

values were obtained by fitting the data to a BET isotherm in the P/P0 range of 0.05-0.33 using N2. 

The pore volume is reported at P/P0 of ~1.  

Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) was performed 

on the catalysts to probe the surface adsorbed species under different feed conditions and 

temperatures. A Nicolet IS50 spectrometer from Thermo Scientific equipped with a MCTA 

detector was used. The catalyst was loaded in a high pressure/ high temperature-resistant reactor 

cell from Harrick Scientific with two ZnSe windows and one quartz window. The gas inlet and 

outlet ports of the reactor cell were used to feed and drain the gases. The inlet lines were insulated 

and temperature controlled with heating tape. Argon (AIRGAS, AR-UHP300, 100%), carbon 

dioxide (AIRGAS UN1013, 99.999% purity) were used for the feed. A water bubbler attached to 

an Argon source was used for the water feed. The samples were loaded in the DRIFTS cell and 

initially activated under Ar flow (40 sccm) for 2 hrs, while heating the sample to 250 oC with a 

ramp rate of 2.5 oC/min. Once the sample was cooled down post activation, gases were flown as 

desired. Two different gas flow patterns were executed. In the first case (referred to as CO2 + H2O) 

CO2 (8 sccm CO2 with 25 sccm Ar) was initially flown for 10 minutes with subsequent flushing 

of the cell with Ar (40 sccm) for 30 minutes. Then H2O was flown (through a water bubbler with 
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2.5 sccm Ar flown at 40°C) for 20 mins and subsequently flushed with Ar for 30 minutes. In the 

second case (referred as H2O + CO2), the feed was reversed with water being flown first, then Ar 

flushing followed by CO2 flow and a second Ar flushing step. Once, CO2 and H2O have been flown 

for both of the cases, a temperature programmed desorption (TPD) experiment was conducted. 

Spectra were taken at 30 oC, 100 oC and 200 oC. All the TPD spectra were composed of 150 scans 

with a resolution of 2Å (0.241 cm-1). 

For the post reaction temperature programmed oxidation study (TPO), immediately 

following the long term reaction study, the catalyst was cooled under 50 sccm He until it reached 

room temperature. Then a 10% O2 in He (50 sccm total flow) was introduced to the catalyst at a 

constant GHSV. Finally, the temperature was then increased to 900°C at a ramp rate of 10°C/min 

and held for 30 min.  

5.2.3 Catalytic Testing 

For the bi-reforming reaction experiments, the catalyst was reduced in 5%H2 in He for 1 

h. After the reduction step, the catalyst was cooled to 200°C in He flowing at 50 sccm. Bi-

reforming reaction experiments were conducted at three different space velocities of 86,700 h-1, 

136,000 h-1 and 272,000 h-1 at atmospheric pressure. The reactants, methane, carbon dioxide (both 

99.999% pure from Airgas) and water were then introduced in a 3:1:2 ratio, respectively (error ≤

8%; total reactant concentration ≤ 1%) to the catalyst with a total flow rate of 100 sccm. A feed 

analysis was done prior to the start of the reaction, after the reactant flow was stable, the 

temperature was increased to 600°C using a 10°C/min ramp rate and held for a minimum of 20 

min or until signals became very stable in the MS. The temperature was then decreased to 550°C 

and held for another 20 min. The process was repeated by decreasing the temperature in 50°C 

increments and holding for 20 min until 400°C. 
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5.3 Results and Discussion 

5.3.1 Equilibrium Conversions 

A simulation of equilibrium conversions at the operating conditions utilized experimentally 

was done using Aspen Plus V7.3 software. The feed ratio was 3:1:2 for CH4:CO2:H2O respectively.  

 
Figure 5.1: Sensitivity study and H2:CO ratio with respect to temperature (300°C-600°C) at 
1 atm using a feed composition in Kmol CH4=3, CO2=1 and H2O=2. (a) Sensitivity study 
shows equilibrium conversion of reactants. (b) Syngas ratio. 
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The temperature was varied from 300-600°C in increments of 50° while maintaining a 

constant pressure of 1atm. The only allowable products were H2, CO, CH4, CO2, H2O. Figure 

5.1(a) shows the conversion of the reactants while varying the temperature from 300°C to 600°C. 

Initially, only H2O and CH4 show positive conversion while CO2 shows negative conversion below 

500°C indicating the production of CO2 as a result of the water-gas shift reaction which is 

simultaneously occurring with the reforming. At 500°C, the highest conversion possible for CH4 

was 16.9% reaching a maximum of 40.6% at 600°. On the other hand H2O displayed a conversion 

of 35.3% at 500°C and reached 55.6% at a temperature of 600°C. CO2 had a maximum positive 

conversion of 10.9% at 600°C as a result of its earlier production due to the water gas shift reaction. 

Syngas ratios are shown in Figure 5.1(b), from the simulation it was evident that very high syngas 

ratios were possible using the chosen feed composition. The ratios displayed the same trend 

observed experimentally (as shown in the next section) of decreasing with increasing temperatures 

as expected, at 500°C, the syngas ratio was 5.6 whereas it went down to 2.7 at a temperature of 

600°C.  

5.3.2 Experimental Results 

Two catalysts 0.16%Pt-1.34 wt%Ni 1.0 wt%Mg/Ce0.6Zr0.4 and 0.13%Pt-1.39 wt%Ni 1.0 

wt%Mg/Ce0.6Zr0.4 were synthesized and studied for bi-reforming of methane. Simplified notation 

that will be used from now on for each catalyst is included in Table 5.1. The catalysts were 

characterized using XRD, N2-Physisorption, TPR, and TPD-CO2. Steady-state bi-reforming 

experiments were done on the catalysts in the range of (600°C-400°C). A long term study was 

done on the most promising catalyst (0.16Pt). In addition, post reaction characterization (XRD, 

BET, TPO) was also done on the catalyst.   
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X-ray diffraction patterns for the Pd and Pt catalysts were reported in a previous study [98]. 

Both the diffraction pattern for 0.13Pd and 0.16Pt was consistent with a cubic fluorite structure 

characteristic of CeO2. This is consistent with previously published studies of CeZrO2 supports 

suggesting that the ZrO2 in the support is incorporated into the CeO2 crystal lattice [1, 39, 56]. It 

is important to also point out that the diffraction lines had characteristic asymmetric peaks 

indicating that several phases of the ceria zirconia solid solution may be present [73]. NiO and 

MgO peaks were visible at a 2θ between 42-44° for both the 0.13Pd and 0.16Pt. On the other hand, 

Pt and Pd diffraction lines were not visible as expected because of the very low content and high 

dispersion in the catalyst system consistent with previous literature [56, 72].  

The reducibility of this catalyst system was previously studied through temperature-

programmed reduction experiments [20, 98].  The results and peak reduction temperatures are 

summarized in Table 5.1. Overall, the Pd catalyst displayed a lower and more defined reduction 

temperature compared to Pt catalysts.  Both reduction profiles had two distinct peaks, one at a 

lower temperature attributed to the weakly bound metals and surface cerium oxide and one at a 

higher temperature likely resulting from the strongly bound NiO and oxygen in bulk ceria [27, 68, 

74, 94]. However regardless, it is important to point out that both the Pd and Pt catalyst reduced at 

much lower temperatures compared to the support alone. This is not surprising since it has been 

well documented in the literature that the reducibility of CeO2 is favorably influenced by the 

addition of small amounts of metals [31, 47, 68, 76, 81]. In addition, specifically noble metals such 

as those used for this catalyst system have been shown to help ceria reduce to Ce3+ by creating 

oxygen vacancies[65] since noble metals have an affinity to dissociatively adsorb hydrogen 

thereby allowing hydrogen spillover [56, 77, 94, 95].  
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Table 5.1: Physiochemical properties. 

Sample Notation SBET (m2/g) 
Pore 

Volume 
(cc/g) 

Pore 
Diameter 

(nm) 

Amount CO2-
desorbed 

(µmole/g.cat) 
(Temp 70-

550°C) 

Peak 
Reduction 

Temperature 
(°C) 

0.13%Pd- 
Ce0.6 Zr0.4 O2 -
1.39Ni1.0Mga 

0.13Pd 28 30.8b 0.06 9.5 1.23 169 

0.16%Pt- 
Ce0.6 Zr0.4 O2 -
1.34Ni1.0Mgb 

0.16Pt 31 *  17.0c 0.07 *  0.05c 11.6 *  7.2c 1.53 248 *  

Ce0.6 Zr0.4 O2
b CeZr 152* 0.35 * 14.1* 0.38 618 

*Indicates the average of two experiments reported 
a Data obtained from previous studies [98] 
b Data obtained from previous studies [20] 
c Post-reaction characterization from this study
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Surface and bulk property changes of the catalyst system were examined by N2-

physisorption in a previous study [98]. The results are summarized in Table 5.1. In general, the 

surface areas as well as pore volumes decreased with the addition of metals consistent with 

previously reported results in the literature [1, 71, 72]. This is likely due to some pore blocking 

done by the metals.   

In a previous study, temperature programmed desorption of carbon dioxide was utilized to 

determine catalyst basicity [98]. The results are reported in Table 5.1. The 0.13Pd catalyst was 

more basic as it had 2.91 µmole/g of CO2 desorbed, whereas the 0.16Pt catalyst had only 1.53 

µmole/g over the tested range. A more basic catalyst is desirable because of its ability to shift 

equilibrium concentrations resulting from CO disproportionation thereby reducing deposition of 

carbon [7].  

Table 5.2: Comparison of steam reforming alone vs. dry reforming alone vs. bi-reforming 
reaction data at 500°C and 1 atm.  
 

T=500°C 0.16Pt 0.13Pd 

 

H2:CO 
CH4 
Conv 
(%) 

CO2 
Conv 
(%) 

H2:CO 
CH4 
Conv 
(%) 

CO2 
Conv 
(%) 

Dry 
Reforming 0.4 20 25 0.4 37 57 

Steam 
Reforming 
1:1-CH4:H2O 

2.5 33 N/A 3.6 51 N/A 

Bi-Reforming 
(1:1:1) 1.2 78 32 2.9 42 10 

Bi-Reforming 
(3:1:2) 1.9 33 36 3.0 25 13 

N/A: Not applicable because there was no CO2 in the feed. 
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5.3.3 DRIFTS 

Figure 5.2 (a and c) shows the DRIFTS spectra of 0.16Pt and 0.13Pd with H2O flow 

followed by CO2 flow respectively. Figure 5.2 (b and d) shows the spectra of the opposite case 

with CO2 flown followed by H2O flow for 0.16Pt and 0.13Pd respectively. Water and OH- 

adsorption were visible through bands >3500cm-1[136-138]. Hydroxyl group formation was the 

most common peak in all the samples at ~3695cm-1[138]. Gas phase water molecules were also 

evident at ~3745cm-1 and an increase in concentration was evident with increasing temperature 

indicating that more water molecules are desorbing from the catalyst [138]. In all tested samples, 

carbonates (bridging, bidentate, monodentate, free and out of plane bending modes) as well as 

some formates (bidentate and bridging modes) were observed. Bidentate carbonates were seen 

through bands 1580 cm-1, 1553 cm-1, 1560 cm-1, 1295 cm-1, 1045 cm-1
 consistent with literature 

[138] whereas monodentate carbonates were observed at 1538 cm-1, 1460 cm-1, 1390 cm-1, 1060 

cm-1. Bridging carbonates were seen through bands 1130 cm-1, 1220 cm-1, 1730 cm-1[136-138]. 

Bands 866 cm-1 and 857 cm-1 were also observed which indicated the presence of out of plane 

bending vibrations [139]. Free carbonates and chelating bidentate modes were seen at bands 

1434cm-1 and 1656cm-1 respectively [136].  

Both asymmetrical and symmetrical O-C-O stretching were observed through the presence 

of bands 1585 cm-1
 and 1375 cm-1

 respectively [140]. In addition, bidentate C-H stretching was 

observed at 2845cm-1 as well as bridging at 2950cm-1[138]. The ceria-zirconia oxide support 

(CeZr) showed formation of both carbonates and formats during both cases (CO2 followed by H2O) 

and (H2O followed by CO2). Furthermore, peak ~3650cm-1 showed the presence of germinal 

hydroxyl ions over the ceria consisted with literature [138]. However formate peaks decreased for 
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the metal loaded samples (NiMg, 0.16Pt, 0.13Pd). No C-H vibrations were visible, only bands 

~1585cm-1 which is often indicative of O-C-O vibrations for formats.  

 
Figure 5.2: DRIFTS spectra of 0.16Pt and 0.13Pd catalysts. (a) 0.16Pt with H2O then CO2 
flown, (b) 0.16Pt with CO2 then H2O flown, (c) 0.13Pd with H2O then CO2 flown, (d) 0.16Pt 
with CO2 then H2O flown 

 
This lack of formate bands in the metal loaded catalysts can be attributed to a decrease in 

Ce-O and/or Zr-O sites where formats are typically formed, resulting from metal loading. This is 

also consistent with the decrease in surface area with metal loading observed through N2-

physisorption. It is important to note that both 0.16Pt and 0.13Pd samples had prominent carbonate 

bands. However, the 0.13Pd sample showed stronger carbonate adsorption indicating that CO2 
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adsorbs stronger onto the 0.13Pd catalyst compare to the 0.16Pt catalyst. This is consistent with 

previous TPD-CO2 studies on this catalyst system which showed more CO2 desorption on the 

0.13Pd catalyst compared to the 0.16Pt catalyst [98].  

5.3.4 Steady-State Reaction Studies (600-400°C) 

Syngas production as a function of temperature from the steady state studies are presented 

in Figure 3. In general, both the 0.13Pd and 0.16Pt had a decrease in syngas ratio with increasing 

temperature regardless of GHSV used. On the other hand, the 0.16Pt catalyst displayed overall 

higher syngas ratios compared to the 0.13Pd catalyst under the highest and lowest GHSV used. In 

general 0.16Pt catalyst had much higher reactant conversions compared to the 0.13Pd catalyst. At 

500°C, 0.16Pt catalyst had CH4 conversions of 39%, 33% and 14% at 86,700h-1, 136,000h-1
, 

272,000h-1
 respectively. However, 0.13Pd catalyst had 40%, 25% and 8% at 86,700h-1, 136,000h-

1
, 272,000h-1

 respectively. Activation energy calculated for CH4 was 11 Kcal/mol for 0.16Pt 

catalyst and 11.5 Kcal/mol for 0.13Pd catalyst which are comparable to literature values for tri-

reforming and water gas shift using similar catalyst systems [50, 141]. 

It is important to note that most of the carbon was accounted for by doing a carbon balance 

on the system at the various temperatures. At the desired 500°C with a GHSV of 272,000h-1, 98% 

of the carbon was accounted for in the 0.16Pt catalyst; whereas 100% of the carbon was accounted 

for in the 0.13Pd catalyst. At a GHSV of 136,000h-1 and a temperature of 500°C, 93% of the carbon 

was present in the 0.13Pd catalyst compared to 91% in the 0.16Pt catalyst.  

The syngas ratios for both 0.16Pt and 0.13Pd catalysts are shown in Figure 5.3 (a) and (b) 

respectively. Both catalysts had lower syngas ratios with increasing temperature. However, 0.16Pt 

catalyst had syngas ratios closer to the desired 2:1 ratio at 500°C. The highest syngas ratio was 

9.13 at 450°C at a GHSV of 272,000h-1 for 0.16Pt sample and 9.63 at a GHSV of 136,000h-1 for 
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the 0.13Pd catalyst. This is a result of the water-gas shift reaction simultaneously occurring along 

with the bi-reforming reaction at that temperature.  

 
Figure 5.3: H2:CO ratio with respect to temperature at different GHSV (h-1). (a) H2:CO ratio 
of 0.16Pt catalyst, (b) H2:CO ratio of 0.13Pd catalyst. 

 
At 500°C, the 0.16Pt catalyst had syngas ratios of 1.94, 1.95 and 2.16 for GHSV’s of 

86,700h-1, 136,000h-1
, 272,000h-1

 respectively. On the other hand, the 0.13Pd catalyst had syngas 

ratios of 2.29, 3.02 and 1.57 for GHSV’s of 86,700h-1, 136,000h-1
, 272,000h-1

 respectively at 

500°C. The varying trend in syngas ratio in the 0.13Pd catalyst can be attributed to Pd adsorbing 

CO2 more strongly than Pt. This is also consistent with DRIFTS results where more pronounced 

carbonate peaks were visible on the 0.13Pd catalyst compared to the 0.16Pt catalyst. Previous 

temperature-programmed desorption of CO2 studies (TPD-CO2) done by this group have also 

shown the 0.13Pd catalyst having more CO2 desorbed compared to the 0.16Pt catalyst [98]. 

Nonetheless, the lowest syngas ratio was at 600°C at the highest GHSV of 272,000h-1 for both 

catalysts where 0.16Pt had a ratio of 1.22 and 0.13Pd had a ratio of 1.10. 

Conversion of methane at the different GHSV’s with respect to temperature is shown in 

Figure 5.4 for both 0.16Pt and 0.13Pd. Methane conversion increased with increasing temperature 

as expected and generally decreased with increasing space velocity. The highest conversion of 

methane was 62% at a GHSV of 86,700h-1 for the 0.16Pt catalyst at 600°C. Meanwhile the 
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conversion of methane reached a maximum of only 59% for the 0.13Pd catalyst at the same GHSV 

and temperature.  

 
Figure 5.4: CH4 percent conversion with respect to temperature at different GHSV (h-1). 
(a) CH4 percent conversion of 0.16Pt catalyst, (b) CH4 percent conversion of 0.13Pd 
catalyst. 

 
At 500°C and a GHSV of 136,000h-1, 0.16Pt had a CH4 conversion of 33% compared to 

the 0.13Pd catalyst’s 25% conversion under the same conditions. Conversions of CO2 are shown 

in Figure 5.5. Overall, CO2 had higher conversions with increasing temperatures as expected since 

the water-gas shift reaction where CO2 can be produced favors lower temperatures (T<500°C). 

Similarly increasing the GHSV decreased the conversion of CO2. Conversion of CO2 was 36% at 

a GHSV of 136,000h-1 for the 0.16Pt catalyst at 500°C, whereas for the 0.13Pd catalyst, the CO2 

conversion was only 13% at the same GHSV and temperature consistent with the higher syngas 

ratio under those conditions. The maximum CO2 conversion was 97% for the 0.16Pt catalyst at a 

GHSV of 86,700h-1 compared to 96% for the 0.13Pd catalyst. At 500°C and GHSV of 272,000h-

1, the conversion of CO2 was 11% and 16% for the 0.16Pt and 0.13Pd catalysts respectively.  

5.3.5 Conditions (Feed Composition) Effect of Feed 

Different bi-reforming feed compositions were tested on both 0.16Pt and 0.13Pd catalysts 

and compared to both dry reforming as well as steam reforming results. A summary of the results 
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are shown in Table 5.2. Dry reforming alone had very low syngas ratios of only 0.41 for 0.16Pt 

catalyst and 0.44 for the 0.13Pd catalyst at 500°C. Steam reforming had higher syngas ratios when 

the reactant feed was 1:1 for CH4:H2O. The syngas ratio was higher for 0.13Pd at 3.55 compared 

to 2.51 for 0.16Pt for steam reforming alone. Two different feed compositions were tested for bi-

reforming. The first composition was 1:1:1 for CH4:CO2:H2O which yielded a syngas ratio of 1.24 

for 0.16Pt and 2.87 for 0.13Pd. Methane conversion was 78% for 0.16Pt compared to only 42% 

for 0.13Pd. Adjusting the feed to 3:1:2 for CH4:CO2:H2O, the syngas ratio increased to 1.94 for 

0.16Pt with a CH4 conversion of 33% and 3.02 for 0.13Pd with a lower conversion of 25% for 

CH4.  

 
Figure 5.5: CO2 percent conversion with respect to temperature at different GHSV (h-1). (a) 
CO2 percent conversion of 0.16Pt catalyst, (b) CO2 percent conversion of 0.13Pd catalyst. 
 
5.3.6 Time on Stream Study 

A steady state experiment was done on the 0.16Pt catalyst using a GHSV of 136,000h-1 at 

a constant temperature and pressure of 500°C and 1atm, respectively. The feed ratio was 3:1:2 for 

CH4:CO2:H2O respectively. The catalyst was left on-stream for 3 hours. Figure 5.6 shows the 

conversion of the reactants with time on stream. Conversion did not decrease with time on stream 

for any of the reactants indicating that the catalyst remained active even with extended time on 

stream. Conversions of CH4 and CO2 were constant at 37% and 33% respectively.  
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Figure 5.6: Time-on-stream study of 0.16Pt sample at T=500°C and P= 1 atm. Figure shows 
reactant % conversion with respect to time on stream.  

 
A post reaction temperature programmed oxidation study was done by flowing 10% 

oxygen in the carrier gas and ramping the temperature to 900°C. No surface coke was visible 

indicating that the catalyst did not deactivate. Post reaction XRD was also done and no diffraction 

lines shifts were observed in comparison to the fresh catalyst. Post reaction BET showed minor 

decreases in surface area, pore volume and pore diameter as reported in Table 5.1.  

5.4 Conclusion 

This study compared the activity of a Pt and Pd doped Ni/Mg catalyst supported on ceria 

zirconia oxide for low temperature bi-reforming of methane while maintaining a syngas ratio of 

2:1. The optimum feed composition used was 3:1:2 for CH4:CO2:H2O respectively. Three different 

GHSV were tested to study the effect on conversion and syngas ratio if any. At the lowest GHSV 

of 86,700h-1, 0.16Pt catalyst produced a H2:CO ratio of 1.95 with a methane conversion of 39% 

and carbon dioxide conversion of 45% at 500°C. On the other hand, 0.13Pd had a higher syngas 

ratio of 2.29 under the same conditions as well as comparable conversions of 40% and 41% for 
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methane and carbon dioxide respectively. Alternatively at 136,000h-1, 0.16Pt catalyst maintained 

a syngas ratio of 1.94 with a methane conversion of 33% along with a carbon dioxide conversion 

of 36%. However 0.13Pd had much lower reactant conversions of 25% for methane and 13% for 

carbon dioxide although the syngas ratio was higher at 3.02. This is likely a result of the lower 

dispersion of Pd compared to Pt. At the highest tested GHSV of 272,000h-1, 0.16Pt catalyst 

produced a syngas ratio of 2.16 with a conversion of 14% for CH4 and 11% for CO2. Conversely, 

at a GHSV of 272,000h-1, 0.13Pd had a syngas ratio of only 1.57 with 8% conversion for CH4 and 

16% conversion for CO2. DRIFTS spectra suggested that 0.13Pd had higher carbonate adsorption 

compared to the 0.16Pt catalyst which is consisted with the higher syngas ratios observed over the 

same catalyst. Overall, 0.16Pt is the optimum catalyst for this study because it had a consistent 

syngas ratio closer to 2:1 at the desired 500°C temperature compared to 0.13Pd which had syngas 

ratios that varied from 1.57-3.02 at the different GHSV tested. In addition, 0.16Pt catalyst 

generally had consistently more desirable higher methane conversions.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions  
 

This study focused on synthesizing and testing low temperature (T<500°C) reforming of 

methane catalysts comprised of (0.07-0.64 wt%) Pt and (0.13-0.51 wt%) Pd doped 1.34wt%Ni-

1.00wt%Mg on a ceria-zirconia oxide (Ce0.6Zr0.4)O2 support. Both dry and bi-reforming of 

methane were studied over the synthesized catalysts in order to determine the optimum catalyst 

and conditions for the desired syngas ratio (~2:1). For landfill gas (LFG) applications, the effect 

of siloxane decomposition to silica was studied over the reforming catalysts using three different 

amounts (1 week, 1 month and 6 month) to determine the extent of damage to the catalyst.  

Different loadings of Pt or Pd were studied to determine the optimum catalyst that would 

convert at least 10% (X10) of the reactants at temperatures at or lower than 500°C while resisting 

coking. Initial temperature programmed reduction studies showed that the 0.16wt%Pt-1.34wt%Ni-

1.00wt%Mg/Ce0.6Zr0.4O2 catalyst (0.16Pt) had the lowest reduction temperature of 248°C 

compared to other Pt doped catalysts. In addition, it had one of the highest amounts of CO2 

desorbed at 1.30 µmol/g.cat indicating that it is more basic than other catalysts leading to higher 

activity. Furthermore, dry reforming reaction results showed that the 0.16Pt catalyst had the lowest 

CH4 as well as CO2 X10 conversion temperatures of 454°C and 432°C respectively. This catalyst 

system was also shown to be very stable when left on stream for more than 100 hours (dry 

reforming).  
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A series of Pd doped catalysts were synthesized and also tested for methane reforming to 

determine which noble metal, Pt or Pd, had superior activity for methane reforming. It was 

determined that 0.13wt% Pd-1.34wt%Ni-1.00wt%Mg/Ce0.6Zr0.4O2 catalyst (0.13Pd) was the more 

desirable catalyst in the Pd series. It had a reduction temperature of 169°C with 1.23 µmol/g.cat 

of CO2 desorbed. Furthermore, 10% CH4 conversion was achieved at 383°C while 10% CO2 

conversion occurred at 366°C over this catalyst. At 450°C, the turnover frequency was determined 

to be 3.37s-1 compared to 3.50s-1 for the 0.16Pt catalyst. In addition, the calculated rate was 

equivalent to 1.49*10-2 mol/hr/g.cat for the 0.13Pd catalyst compared to 1.73*10-2 mol/hr/g.cat for 

the 0.16Pt catalyst.  

 For biomass derived landfill gas (LFG) applications, the effect of siloxanes on the 

reforming catalyst was determined using accelerated poisoning studies. Three different poisoning 

amounts equivalent to deposition from 1 week (1W), 1 month (1M) and 6 month (6M) of 

continuous LFG flow over the low temperature catalyst (0.16Pt) as well as high temperature 

catalyst (NiMg) were tested.  It was shown that even minimal exposure amount had adverse effects 

on both catalysts, where 1 week (1W Pt) of poisoning decreased the reforming temperature from 

454°C to 518°C for CH4 X10 using 0.16Pt catalyst. The unfavorable trend continued with the X10 

temperature increasing to 535°C at 1M Pt until reaching a maximum of 587°C for 6M Pt. Similarly 

for the high temperature reforming NiMg catalyst, at 1 week (1W NiMg) the CH4 X10 increased 

from 762°C to 810°C and reached 842°C at 1M NiMg whereas there was no conversion of methane 

detected at 6M for this catalyst up to the maximum tested temperature of 900°C. These results 

confirmed that siloxanes adversely affect the reforming catalyst and the LFG would require 

cleanup prior to processing. 
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Dry reforming studies have shown that both 0.16Pt and 0.13Pd catalysts are capable of 

reforming methane at temperatures less than 500°C with comparable turnover frequencies and 

rates. However, the produced syngas ratios were nowhere near the desired ratio of 2:1 with the 

0.13Pd catalyst having a syngas ratio of 0.39 compared to 0.16Pt catalyst’s 0.30 at 450°C. This is 

attributed to the reverse water gas shift (rWGS) reaction simultaneously occurring with the 

reforming reaction at the low operating temperature used. Addition of steam to the feed (bi-

reforming) was utilized to improve the H2:CO ratio. Bi-reforming studies have shown that using a 

3:1:2 CH4:CO2:H2O improved the syngas ratio to 1.94 for 0.16Pt catalyst which is very close to 

the desired 2:1 ratio. However the ratio increased to an undesirable high of 3.02 for 0.13Pd catalyst. 

Conversion of methane also increased to 33% for the 0.16Pt catalyst and 25% for the 0.13Pd 

catalyst at 500°C. 

6.2 Future Work 

6.2.1 Gas Cleanup and Cost Analysis 

The future direction of this work should include two main components. The first is to focus 

on finding an effective scrubbing and cleanup process for the LFG that is inexpensive as well as 

efficient. The tolerable limits of the process equipment are known and published by the 

manufacturers. However, limits for minimal catalyst deactivation are still underdeveloped. 

Therefore, a maximum amount of siloxane removal should be considered in order to minimize 

catalyst deactivation and increase its lifetime. Removal technologies that can be further developed 

include adsorption which consists of both a regenerative and non-regenerative type. Adsorption is 

typically done using either fixed or fluidized adsorption bed [34]. The second type of removal 

technology is through absorption, which can either be chemical or physical. Finally, contaminants 

can also be removed via a deep chilling and condensation process [34]. Each of these processes 
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has both advantages and limitations and should be further evaluated for cost, efficiency and 

economic feasibility.  

6.2.2 FTS Catalyst Components Suitable for Combined Process 

 The second main area to focus on is combining the reforming catalyst with an FTS catalyst 

through process intensification. FTS can be operated at low temperatures (LTFT, T<300°C) using 

cobalt catalysts or high temperatures (HTFT, T>300°C) using iron catalysts on a variety of 

supports. Low temperature FT is often more selective towards longer hydrocarbons and waxes 

which need to be further refined into fuel products [142], whereas high temperature FTS is more 

selective towards lower hydrocarbon chains such as olefins and gasoline [143]. 

This goal should focus on synthesizing and testing an Fe-based FTS catalyst that is capable 

of operating at high temperatures (FTHT).  In addition, to incorporate both catalysts (the low 

temperature reforming and FTS) in a single step though a physical mixture and determine effect 

on activity, selectivity and conversion. The key issue will be to determine the optimal reaction 

temperature for highest hydrocarbon selectivity.  

Previous studies have looked at both cobalt and iron based catalysts for FTS [144-149]. 

Both metals offer different advantages and disadvantages. For the purposes of this project, an iron-

based catalyst is likely the more attractive choice. Iron is readily available, economically feasible 

and is already used on an industrial level. More importantly, iron catalysts can operate at a wider, 

higher temperature range which is desirable for the single step component of this project. This is 

especially useful for the combined process with the dry/steam reforming step which operates at 

temperatures on the higher end of those for FTS. In addition, iron catalysts are more resistant to 

oxidation with water under FTS conditions [150] and are less selective towards methane [144]. 
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Finally, iron catalysts are more resistant to sulfur and ammonia present in syngas than Co catalyst; 

biomass-derived syngas has more sulfur content [147, 150]. 
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APPENDIX B: CALCULATIONS 

 
B.1 Assumptions and Calculations for Chapter 4 

The estimate of accelerated poisoning, general assumptions are: 

• Plant operates 24/7. 

• GHSV= 68,000h-1 

• Density of catalyst= 1704.5 kg/m3 

• Flowrate=Q= 2500ft3/min 

• Assuming a 4mg/m3 siloxane concentration 

 

The sample calculations for silica % weight gain based on the previous assumptions are: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵 =
4248𝑚𝑚

3

ℎ𝑟𝑟
68000 ℎ𝑟𝑟−1

= 0.0625 𝑚𝑚3                                                                   (1) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵 = 0.0625 𝑚𝑚3 × 1704.5 
𝑘𝑘𝑘𝑘
𝑚𝑚3  =106.5 kg                                                   (2)  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 4248 
𝑚𝑚3

ℎ𝑟𝑟
× 4𝐸𝐸−6 

𝑘𝑘𝑘𝑘
𝑚𝑚3 (𝑆𝑆𝑆𝑆𝑆𝑆2) = 0.01699 

𝑘𝑘𝑘𝑘
ℎ𝑟𝑟

                                               (3)  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 6 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝑠𝑠 = 0.01699 
𝑘𝑘𝑘𝑘
ℎ𝑟𝑟

× �180 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 24 
ℎ𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑

� = 73.41 𝑘𝑘𝑘𝑘          (4) 

6 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 % 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔: =
73.41 𝑘𝑘𝑘𝑘
106.5 𝑘𝑘𝑘𝑘

= 68.9%                                                                   (5) 
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Table B1: Mass gain of silica and error calculations  

Sample Nomenclature 
Theoretical 
Mass gain 

SiO2 

Actual Mass 
Gain SiO2 %error 

1 week NiMg 1W-NiMg  2.6% 1.5% -43.5% 

1 month NiMg 1M-NiMg 11.1% 11.9% 7.5% 

6 month NiMg 6M-NiMg 66.7% 65.7% -1.5% 

1week Pt 1W-Pt 2.6% 1.1% -59.4% 

1 month Pt 1M-Pt 11.1% 10.5% -5.4% 

6 month Pt 6M-Pt 66.7% 61.9% -7.2% 

 

Table B2: Effect of changing GHSV (h-1)  

2X GHSV 

GHSV 136000  h-1 

6 months silica % mass 
gain 

Mass of silica/mass of 
catalyst bed 

138 

 
% 

0.5X GHSV 

GHSV 35000  h-1 

6 months silica % mass 
gain 

Mass of silica/mass of 
catalyst bed 

35.8 % 
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Table B3: Effect of changing initial siloxane amount 

2X siloxane 

6 months silica % mass 
gain 

Mass of silica/mass of 
catalyst bed 138 % 

0.5X siloxane 

6 months silica %  
mass gain Mass of silica/Mass of bed 34.5 % 
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